Abstract:
A method of forming a superconductor includes exposing a layer disposed on a substrate to an oxygen ambient, and selectively annealing a portion of the layer to form a superconducting region within the layer.
Abstract:
An oxide superconducting wire of the invention includes a substrate, an intermediate layer which is laminated on a main surface of the substrate, has one or more layers having an orientation, and has one or more non-orientation regions extending in a longitudinal direction of the wire, and an oxide superconducting layer which is laminated on the intermediate layer, has a crystal orientation controlled by the intermediate layer, and has non-orientation regions located on the non-orientation regions in the intermediate layer and is formed into multiple filaments.
Abstract:
Operational characteristics of an high temperature superconducting (“HTS”) film comprised of an HTS material may be improved by depositing a modifying material onto appropriate surfaces of the HTS film to create a modified HTS film. In some implementations of the invention, the HTS film may be in the form of a “c-film.” In some implementations of the invention, the HTS film may be in the form of an “a-b film,” an “a-film” or a “b-film.” The modified HTS film has improved operational characteristics over the HTS film alone or without the modifying material. Such operational characteristics may include operating in a superconducting state at increased temperatures, carrying additional electrical charge, operating with improved magnetic properties, operating with improved mechanic properties or other improved operational characteristics. In some implementations of the invention, the HTS material is a mixed-valence copper-oxide perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.
Abstract:
Disclosed are a superconducting current-limiting element for a current limiter and a method of manufacturing a superconducting current-limiting element for a current limiter, in which the current-limiting element is formed in series by stacking linear superconducting wires, or is formed in parallel by stacking superconducting wires so that one or more superconducting wires are disposed in the same layer, thus facilitating the formation of the current-limiting element in series or in parallel and obviating the use of a winding machine when manufacturing the current-limiting element.
Abstract:
An oxide superconducting thin film includes a substrate having a single crystal structure, the main face of the substrate and a crystal face of the single crystal structure having an angle therebetween; an intermediate layer formed on the main face of the substrate and having an axis oriented in a direction perpendicular to the crystal face; and a superconducting layer formed on the intermediate layer and containing, as a main component, an oxide superconductor having a c-axis oriented in a direction perpendicular to the surface of the intermediate layer. A superconducting fault current limiter and a method of manufacturing an oxide superconducting thin film are also provided.
Abstract:
The invention pertains to creating new extremely low resistance (“ELR”) materials, which may include high temperature superconducting (“HTS”) materials. In some implementations of the invention, an ELR material may be modified by depositing a layer of modifying material unto the ELR material to form a modified ELR material. The modified ELR material has improved operational characteristics over the ELR material alone. Such operational characteristics may include operating at increased temperatures or carrying additional electrical charge or other operational characteristics. In some implementations of the invention, the ELR material is a cuprate-perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.
Abstract:
Electrical, mechanical, computing, and/or other devices that include components formed of extremely low resistance (ELR) materials, including, but not limited to, modified ELR materials, layered ELR materials, and new ELR materials, are described.
Abstract:
A high temperature superconductor (=HTS) coated conductor (1), comprising an HTS layer (11) deposited epitaxially on a substrate (2), wherein the HTS layer (11) exhibits a lattice with a specific crystal axis being oriented perpendicular to the substrate plane (SP), in particular wherein the HTS layer material is of ReBCO type and the c-axis (c) is oriented perpendicular to the substrate plane (SP), wherein the HIS layer (11) comprises particle inclusions (4), in particular wherein the particle inclusions (4) may be used to introduce pinning of magnetic flux, is characterized in that at least a part (4a) of the particle inclusions (4) are formed of the same material as the HTS layer (11), and/or of chemical fractions of the material of the HTS layer (11), such that the average stoichiometry of said part (4a) of the particle inclusions (4) corresponds to the stoichiometry of the HTS layer (11), and that the particle inclusions of said part (4a) are discontinuities of the lattice of the HTS layer (11). A more simple method for producing a HTS coated conductor with reduced losses, and with improved critical current and critical magnetic field is thereby provided.
Abstract:
High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La2CuO4) and a metal (La1−xSrxCuO4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, Tc may be either ˜15 K or ˜30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, Tc exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high Tc phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.
Abstract:
The present invention concerns the improvement of the supercurrent carrying capabilities, i.e. the increase of critical current densities, of bicrystalline or polycrystalline superconductor structures, especially of high-Tc superconductors. By providing an appropriate predetermined dopant profile across the superconductor structure, in particular within or in the vicinity of the grain boundaries, the space-charge layers at the grain boundaries are reduced and thereby the current transport properties of the superconductor significantly improved. Simultaneously, the influence of magnetic fields on the critical current densities is significantly reduced, which in turn enhances the overall supercurrent carrying capabilities while keeping the supercurrent transport properties of the grains at good values.