Abstract:
A method of producing a plasma is provided. The method includes providing at least three hollow cathodes, including a first hollow cathode, a second hollow cathode, and a third hollow cathode. Each hollow cathode has a plasma exit region. The method further includes providing a source of power capable of producing multiple output waves, including a first output wave, a second output wave, and a third output wave. The first output wave and the second output wave are out of phase, the second output wave and the third output wave are out of phase, and the first output wave and the third output wave are out of phase. Each hollow cathode is electrically connected to the source of power such that the first hollow cathode is electrically connected to the first output wave, the second hollow cathode is electrically connected to the second output wave, and the third hollow cathode is electrically connected to the third output wave. Electrical current flows between the at least three hollow cathodes that are out of electrical phase. A plasma is generated between the hollow cathodes.
Abstract:
The disclosure pertains to a capactively coupled plasma source in which VHF power is applied through an impedance-matching coaxial resonator having a folded structure and symmetrical power distribution.
Abstract:
Disclosed is a vacuum processing apparatus in which a conducive partition having a plurality of through holes is formed inside a vacuum processing vessel, and an internal space of the vacuum processing vessel is partitioned into a plasma generating space in which a high-frequency electrode is installed to function as a counter electrode with respect to the partition, and a substrate processing space in which a substrate is set. This vacuum processing apparatus includes a gas reservoir formed on a sidewall of the vacuum processing vessel and communicating with the plasma generating space, and a gas supply system connected to the gas reservoir to supply a gas to the gas reservoir.
Abstract:
Provided is a semiconductor device manufacturing method by which plasma processing can be performed uniformly on a substrate. A plasma processing apparatus according to one embodiment of the present invention includes an auxiliary electrode provided annularly along a periphery of the lower electrode on a lateral side of the lower electrode. When plasma processing is performed on a substrate S, a potential of the lower electrode is set lower than the potential of the upper electrode while a potential of the auxiliary electrode is set lower than a potential of the upper electrode.
Abstract:
A plasma etch reactor 20 includes a upper electrode 24, a lower electrode 24, a peripheral ring electrode 26 disposed therebetween. The upper electrode 24 is grounded, the peripheral electrode 26 is powered by a high frequency AC power supply, while the lower electrode 28 is powered by a low frequency AC power supply, as well as a DC power supply. The reactor chamber 22 is configured with a solid source 50 of gaseous species and a protruding baffle 40. A nozzle 36 provides a jet stream of process gases in order to ensure uniformity of the process gases at the surface of a semiconductor wafer 48. The configuration of the plasma etch reactor 20 enhances the range of densities for the plasma in the reactor 20, which range can be selected by adjusting more of the power supplies 30, 32.
Abstract:
A plasma etch reactor 20 includes a reactor chamber 22 with a grounded upper electrode 24, a lower electrode 28 which is attached to a high frequency power supply 30 and a low frequency power supply 32, and a peripheral electrode 26 which is located between the upper and lower electrode, and which is allowed to have a floating potential. Rare earth magnets 46, 47 are used to establish the magnetic field which confines the plasma developed within the reactor chamber 22. The plasma etch reactor 20 is capable of etching emerging films used with high density semiconductor devices.
Abstract:
In order to cyclically implement isotropical and anisotropical etching of an interlayer insulator provided in a semiconductor wafer, two variable capacitors are provided for applying RF bias (power) to a triode type dry etching apparatus. The two variable capacitors are controlled such that cyclically, as one of the two capacitors exhibits maximum capacitance thereof, the other capacitor exhibits minimum capacitance thereof. As an alternative to the above, a wafer supporting table provided in a reactive chamber of an electron cyclotron resonance type apparatus, is cyclically supplied with a radio frequency (RF) bias and the ground potential. This cyclic application of the RF bias and the ground potential is controlled by a combination of a pulse generator and an amplitude modulation circuit both coupled to an RF signal generator. The via hole is effectively formed using the cyclic operations of the isotropic and anisotropic etching.
Abstract:
Hollow-anode glow discharge apparatus in the form of two-electrode and three-electrode reactors provide, in various embodiments, improved uniformity, efficiency and low-pressure substrate surface processing. In one improved uniformity embodiment for ion-dominated processes, the apparatus of the invention includes a high-energy-density uniformizing grid having multiple, multi-sized and evenly-spaced holes. In one improved uniformity embodiment for chemically-dominated processes, the apparatus of the invention includes a high-energy-density uniformizing grid having multiple, evenly-spaced holes and a stepped or continuously-variable non-planar profile. In one improved low pressure embodiment for ion-dominated and/or chemically-dominated processes, the apparatus of the invention includes a high-energy-density grid having multiple, evenly-sized and spaced holes of widths large enough to overcome dark space effects. In one improved efficiency selected ion energy embodiment for ion-dominated and/or chemically-dominated processes, the apparatus of the invention includes a high-energy-density source that synergistically cooperates with an apertured grid to provide selected-energy ions at higher densities than heretofore possible. In any embodiment, both build-up on and removal from the substrate are possible.
Abstract:
A method and an apparatus for plasma etching semiconductor materials by providing an intermediate electrode between the electrodes in a parallel state type plasma etching apparatus, moving the intermediate electrode by a drive mechanism, and continuously changing from a condition of high input power and high self-bias voltage to a condition of low input power and low self-bias voltage while varying the distance between the intermediate electrode and the first electrode and the RF power, thereby to remove damage or deposits that may have been formed on the surface when the semiconductor material was being subjected to processing.
Abstract:
The disclosure pertains to a capacitively coupled plasma source in which VHF power is applied through an impedance-matching coaxial resonator having a symmetrical power distribution.