Abstract:
Disclosed is a molded case circuit breaker. The molded case circuit breaker includes a case; an interrupter assembly installed in the case, and provided with an arc gas outlet for discharging arc gas generated from inside of the interrupter assembly to outside; an exhaustion guiding portion disposed between the interrupter assembly and the terminal portion, and provided with a discharge chamber therein, to thus provide an arc gas passage between the arc gas outlet and a vent chute of the terminal portion; and an exhaustion cover mounted to the case with a structure to cover the exhaustion guiding portion, to thus block the arc gas passage.
Abstract:
In one aspect, circuit breakers including ventilation of heat generated by a bi-metal element are disclosed. Circuit breakers include a circuit breaker housing with a heat channel adjacent to a bi-metal element, and a vent exit from the heat channel configured to remove heat generated by the bi-metal element during use. According to another aspect, an electronic circuit breaker including an electronic module with heat ventilation is disclosed. The electronic circuit breaker includes an electronic module including a housing portion forming an electronic circuit chamber that contains electronic circuit components, wherein the housing portion includes one or more vent exits from the electronic circuit chamber configured to remove heat generated by the electronic circuit components during use. Circuit breaker housings and methods of operating circuit breakers are provided, as are other aspects.
Abstract:
The concave streak portion 26, in which the welding inclination surface 27 is formed, is provided on the side wall 12; the projecting portion 40, which is fitted into the concave streak portion 26 when the substrate 10 and the lid body 35 overlap to form the switch case 3, is provided on the lid body 36; when the substrate 10 and the lid body 35 are overlapped, the switch case 3 is sealed by contacting the seal ring 31 with the flange portion 38 and the welding shoulder portion 41 interferes with the welding inclination surface 27; the substrate 10 and the lid body 35 are jointed by melting the interference portion by high-frequency welding; the release region K, which keep the communicating state of the inside of the switch case 3 with the outside is designed by notching the projecting portion 40 from the root thereof.
Abstract:
Disclosed is a molded case circuit breaker. The molded case circuit breaker includes include: a case; an interrupter assembly installed in the case, and provided with an arc gas outlet; an exhaustion guiding portion disposed between the interrupter assembly and the terminal portion; an exhaustion cover mounted to the case, with a structure to cover the exhaustion guiding portion; and exhaustion guides spaced from each other in the exhaustion guiding portion, in a direction perpendicular to an arc gas discharge direction, in a state where the gas divergence portion is disposed therebetween, the exhaustion guides forming the arc gas passage together with the gas divergence portion. Under such configuration, arc gas discharged out of the arc gas outlet can be rapidly discharged to outside through the exhaustion guides, without an eddy current.
Abstract:
Disclosed is a molded case circuit breaker. The molded case circuit breaker includes a case; an interrupter assembly installed in the case, and provided with an arc gas outlet for discharging arc gas generated from inside of the interrupter assembly to outside; an exhaustion guiding portion disposed between the interrupter assembly and the terminal portion, and provided with a discharge chamber therein, to thus provide an arc gas passage between the arc gas outlet and a vent chute of the terminal portion; and an exhaustion cover mounted to the case with a structure to cover the exhaustion guiding portion, to thus block the arc gas passage.
Abstract:
An illuminated, waterproof and dust-proof switching element for converting a linear movement of a push button into an electrical switching signal, has a housing and a cap which is axially displaceable within the housing along a stroke path between two end bearings, the cap being provided with a protective membrane for external sealing that is formed from a flexible plastic material by way of multicomponent injection molding, wherein the switching element includes within the housing at least four contacts, of which at least two pairs of the contacts are designed with a like contour and together follow a rearrangement from a linear arrangement thereof in the region of a plug or other connector to a rectangular arrangement in the interior, a pressure compensation element, a circuit board on which at least one push button and at least two lighting elements are arranged, a silicone pad as a restoring element, a guide, an end stop, a cap with integrally molded protective membrane, and a frame.
Abstract:
A technique of preventing permeation of liquid and dust to electronic parts within a housing of an input device for an in-vehicle device.An input device of an in-vehicle device comprises a housing that stores a substrate and an operating member that passes through the housing from a side of the substrate and is exposed to outside. A first drain hole is formed in the housing at a position corresponding to a gap between the housing and the operating member. The first drain hole is coupled with a drainpipe, which passes through the substrate to the back side of the substrate.
Abstract:
A switch unit includes an upper case that has an operation portion attached therein; a circuit board that has a switch attached thereto that is able to switch contact points by operation of the operation portion; and a lower case that fits into the upper case such that the lower case is surrounded by the upper case, and that accommodates the circuit board between the upper case and the lower case. A draining portion is provided at a side surface of the upper case, and the draining portion is integrally formed with a sidewall forming the side surface and protrudes downward, and has a width that gradually narrows from the top to the bottom thereof.
Abstract:
An electromagnetic relay includes a housing having an accommodating space therein, a magnet coil in the accommodating space to generate electromagnetic force when energized, a moving contact disposed in the accommodating space and driven by the coil, a fixed contact in the accommodating space, the moving contact engaged with or disengaged from the fixed contact as a result of whether the moving contact is driven or not, a breathing hole formed in the housing to communicate between the accommodating space and an exterior space of the housing, and a flame propagation route along which a flame of flammable gas ignited by arc generated between the moving contact and the fixed contact propagates toward the breathing hole. The route includes a flame extinguishment clearance that is set to have such a gap size that the flame is extinguished when passing through the clearance.
Abstract:
A remote function actuator with pressure equalization. A base or enclosure of the actuator (key fob) has one or more openings covered by a breathable waterproof membrane. The opening allows pressure equalization between the inside of the actuator and the outside environment, and the membrane material maintains the enclosure watertight for the electronic system positioned inside the actuator. Positioning the membrane in a recess and/or under a cover member helps protect the membrane from being damaged.