Abstract:
A cap-reactor power groove ballast circuit of the type including first and second, spaced-apart, elongated tape-like conductive foils having intervening layers of electrical insulation rolled together to form a compact cylindrical roll having combined capacitor-inductor-reactor characteristics. One of the spacedapart conductive foils has its width separated into multiple, electrically isolated, strip-like separate foil areas coacting with the common remaining conductive foil to function in the manner of multiple capacitor-inductor components electrically interconnected in circuit relationship. By appropriate connection of terminal tap points to the structure, the device can be made to operate in the manner of a power groove ballast circuit having improved wave shaping characteristics.
Abstract:
A three-phase 48-pulse rectifier transformer includes two 24-pulse rectifier transformers phase-shifted through valve-side output windings. Each 24-pulse rectifier transformer has two sets of grid-side input windings and four sets of valve-side output windings. The two sets of grid-side input windings are connected in parallel and axially arranged in a split manner. Among the four sets of valve-side output windings, two sets of valve-side output windings are radially arranged in a split manner corresponding to one set of grid-side input windings, and the other two sets of valve-side output windings are also radially arranged in a split manner corresponding to the other set of grid-side input windings. The two sets of valve-side output windings that are radially split and the other two sets of valve-side output windings that are radially split are axially arranged in a split manner. The grid-side input windings of the two 24-pulse rectifier transformers are phase-shifted with respect to each other. In this way, a uniform difference of 7.5° is produced in voltages of the eight sets of valve-side output windings of the two 24-pulse rectifier transformers, and the eight sets of valve-side output windings of the two 24-pulse rectifier transformers are correspondingly connected to rectifiers to form a uniform 48-pulse rectifier transformer, which not only reduces the harmonic current generated by the rectifier, but also improves the load capacity of the rectifier.
Abstract:
A high frequency ferroresonant regulator circuit having a saturable core structure comprised of a first core of a square loop magnetic material and a second core; the first core having a first permeability region which provides low reluctance to the flux generated during the initial part of the period between resonant pulses of the ferroresonant circuit, and a second permeability region of different values upon saturation; the second core having a permeability which is less than the first permeability of the first core and which is greater than the second permeability of the first core, and which is of a value which does not saturate at the values of mmf provided by the ferroresonant circuit; which structure increases the width and decreases the amplitude of the resonant pulse provided by the ferroresonant transformer therein during the resonant period to provide increased circuit efficiency and more stable operation at all values of output load.
Abstract:
A three-phase 48-pulse rectifier transformer consists of two 24-pulse rectifier transformers phase-shifted through valve-side output windings. Each 24-pulse rectifier transformer comprises two sets of grid-side input windings and four sets of valve-side output windings. The two sets of grid-side input windings are connected in parallel and axially arranged in a split manner. Among the four sets of valve-side output windings, two sets of valve-side output windings are radially arranged in a split manner corresponding to one set of grid-side input windings, and the other two sets of valve-side output windings are also radially arranged in a split manner corresponding to the other set of grid-side input windings. The two sets of valve-side output windings that are radially split and the other two sets of valve-side output windings that are radially split are axially arranged in a split manner. The grid-side input windings of the two 24-pulse rectifier transformers are phase-shifted with respect to each other. In this way, a uniform difference of 7.5° is produced in voltages of the eight sets of valve-side output windings of the two 24-pulse rectifier transformers, and the eight sets of valve-side output windings of the two 24-pulse rectifier transformers are correspondingly connected to rectifiers to form a uniform 48-pulse rectifier transformer, which not only reduces the harmonic current generated by the rectifier, but also improves the load capacity of the rectifier.
Abstract:
A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.