Abstract:
The disclosed is the power saving device capable of reducing power consumption by maintaining a constant output voltage even when an input voltage changes, and more particularly, the power saving device capable of improving the performance and lifespan of a load by stably adjusting a supplied voltage through the toroidal core, the multi-channel switch, and the control means for controlling the same and then supplying it to the load side and also reducing power consumption accordingly, and particularly, safely and firmly fixing the toroidal core in which the primary coil and the secondary coil are wound inside the power saving device by using the core fixing members and also preventing a temperature rise by easily discharging the heat generated in the toroidal core out of the device.
Abstract:
The present disclosure relates to a reinforced insulation transformer and a design method thereof. The reinforced insulation transformer according to an embodiment of the present disclosure is a transformer in which a secondary winding is wound on a primary winding so that the primary winding and the secondary winding have a stacked structure and satisfy a reinforced insulation criterion, wherein each of the primary winding and the secondary winding includes a conducting wire and an insulation outer layer that surrounds the conducting wire, and the insulation outer layer of the secondary winding has more layers or a greater thickness than the insulation outer layer of the primary winding.
Abstract:
An inductor includes a printed wiring board (PWB) and a plurality of electrically-conductive heat pipes operatively connected to the PWB. The PWB includes electrically conductive traces electrically connected to the plurality of electrically-conductive heat pipes. The traces and plurality of electrically conductive heat pipes form an inductor winding. A method of manufacturing an inductor includes mounting a plurality of electrically conductive heat pipes to a printed wiring board (PWB), wherein the PWB includes electrically conductive traces to connect the plurality of electrically-conductive heat pipes to form an inductor winding.
Abstract:
A surface mountable, toroid magnetic device is provided, the device having a potting filling the central hole of the toroid. The potting extends axially beyond the base of the toroid to form a contact surface which, in use, contacts a mounting body for the device. Heat generated by the device flows by conduction through walls of the toroid defining the central hole into the potting and then through the contact surface into the mounting body.
Abstract:
The invention relates to an isolating element for a toroidal core inductor, comprising a first isolating web part and a second isolating web part, which isolating web parts are provided with latching apparatuses which match one another and in each case with at least one retaining projection, wherein the retaining projections, in the mounted state of the isolating element, rest on a respective top side of the toroidal core inductor, and wherein, in the mounted state of the isolating element, the two isolating web parts extend at least in sections into a passage opening in the toroidal core inductor.
Abstract:
A modular toroidal transformer core cap system, including a plurality of cap segments, wherein each respective cap segment further includes first and second spaced elongated wall members, first and second connector members connected to the respective first and second elongated wall members, and a generally flat panel member connected to and extending between the first and second elongated wall members. The first and second wall members are disposed at a predetermined angle relative one another and the first and second elongated wall members and the panel member are electrically nonconducting. An integral number of cap segments may be joined together to define an annular core cap.
Abstract:
A shield for a toroidal transformer that includes a toroidal assembly that comprises a toroidal magnetic core and a first winding includes a sheet of flexible non-magnetic conductive material. The sheet of flexible non-magnetic conductive material comprises a trunk portion extending along a longest dimension of the sheet of flexible non-magnetic conductive material and configured to wrap along an outer dimension of the toroidal assembly, and a plurality of fingers extending outwardly from the trunk portion and configured to wrap around portions of the first winding along portions of sides of the toroidal assembly in a direction towards the center of the toroidal magnetic core and folding into an inner dimension of the toroidal assembly.
Abstract:
A transformer includes a transformer core, a first wire, which forms a first winding, and a second wire, which forms a second winding. The first and second windings are wound around the transformer core. A preformed insulation structure is arranged between the first and second winding and designed to space apart the second winding from the first winding and the transformer core. The preformed insulation structure further includes a first shell which at least partially encloses the transformer core with the first winding, and a second shell which at least partially encloses the transformer core with the first winding. The first and second shells are identical. One or more holes are defined in the first shell and the second shell. The one or more holes cover more than 10% of a surface of the preformed insulation structure.
Abstract:
According to one embodiment, a synthesizer for a transmitter includes a transformer, a plurality of core support units and a fixing member. The plurality of core support units includes a support plate, fixing unit and an insertion. The support plate supports a toroidal core around which the primary winding is wound. The fixing unit fixes the toroidal core to the support plate. The insertion portion is formed inside or around the toroidal core and into which the secondary winding is inserted. The fixing member includes a plurality of receiving portions to and from which the plurality of core support units are attached and detached. The plurality of receiving portions are formed along a direction in which the plurality of core support units are stacked.
Abstract:
A means is provided for the transmission of electric power that makes use of a coaxial cable and a special transformer for converting three-phase alternating current to single-phase current. The geometry of the transformer comprises a toroidal core with a chord passing through the axis. The primary is wound about the torus and the secondary about the chord.