Abstract:
An interface breakdown-proof locomotive roof composite insulator. The composite insulator comprises: a support body; and at least five shed groups arranged side by side along the axial direction that are provided around the sidewall of the support body, the at least five shed groups includes: at least four shed groups located on the upper end with each group including a large shed and a small shed; and at least one shed group located on the undermost end with each group including two small sheds. For such a shed structure, it is favorable to tolerate impulse voltage, and it is difficult for the interface to be broken down; the electric field on the interface even does not exceed 3 kV/mm, and even if a gas exists on the interface, it will not break through the interface.
Abstract:
A selection method for a strong wind region composite insulator based on structure parameters, and a composite insulator are disclosed. When a selection is made among a plurality of composite insulators according to the selection method, structure parameters of the composite insulators are measured first, and then the selection is made according to certain ranges of the parameters, a selected composite insulator is tested, and it is found that it may withstand strong wind climate environments where the highest wind speed reaches 50 m/s. The composite insulator is a composite insulator having corresponding structure parameters. The selection method is easy to operate and implement. When the composite insulator is applied to a strong wind region where the highest wind speed reaches 50 m/s, the problem of violent oscillation of umbrella skirts or tear of the umbrella skirts does not occur, and the composite insulator may still operate reliably.
Abstract:
A smart link in a power delivery system includes an insulator, which electrically isolates a power line, and a switchable conductance placed in parallel with the insulator. The switchable conductance includes switchgear for sourcing, sinking, and/or dispatching real and/or reactive power on the power line to dynamically in response to dynamic loading, transient voltages and/or currents, and phase conditions or other conditions on the power line.
Abstract:
A smart link in a power delivery system includes an insulator, which electrically isolates a power line, and a switchable conductance placed in parallel with the insulator. The switchable conductance includes switchgear for sourcing, sinking, and/or dispatching real and/or reactive power on the power line to dynamically in response to dynamic loading, transient voltages and/or currents, and phase conditions or other conditions on the power line.
Abstract:
A smart link in a power delivery system includes an insulator, which electrically isolates a power line, and a switchable conductance placed in parallel with the insulator. The switchable conductance includes switchgear for sourcing, sinking, and/or dispatching real and/or reactive power on the power line to dynamically in response to dynamic loading, transient voltages and/or currents, and phase conditions or other conditions on the power line.
Abstract:
An insulator housing comprising a resin bonded fibre tube carrying water repellent, spirally arranged inner sheds and water sheds made from strips of polymeric material provides improved outdoor electrical insulation. The insulator housing provides greater insulation performance per unit length of housing than prior art structures.