Abstract:
A method for stably producing metal beryllium pebbles each ranging from 0.1 to 1.8 mm in particle diameter and 0.05 to 0.6 mm in crystal grain average diameter. The metal beryllium pebbles obtained by the invention are excellent not only in tritium emission power but also in anti-swelling property, and are thus useful as a material for nuclear fusion reactors. The metal beryllium pebbles can also be advantageously employed for aerospace structural materials and the like, by utilizing their light weight and high melting point properties.
Abstract:
Process for decontaminating an exhaust gas from a fusion reactor fuel cycle of exhaust gas components containing at least one heavy hydrogen isotope selected from tritium and deuterium in compound form, the compound form being ammonia and hydrocarbon, the exhaust gas containing CO and hydrogen isotopes and in which the at least one heavy hydrogen isotope is liberated from its compound, separated out from the exhaust gas and fed back into the fuel cycle, comprising(a) carrying out a catalytic oxidation reaction at a temperature of from 200.degree. C. to 250.degree. C., to oxidize the exhaust gas components, without changing the ammonia, as follows: CO to CO.sub.2, hydrocarbon to CO.sub.2 +water, and the hydrogen isotopes to water,(b) bringing the gas admixture resulting from step (a) into contact with a metal bed at a temperature in the range of 200.degree. C. to 400.degree. C. to selectively transform the water into hydrogen isotopes and to remove O.sub.2,(c) bringing the gas admixture resulting from step (b) ino contact with a hot membrane made of palladium or a palladium-silver alloy to crack the ammonia at a temperature of 400.degree. C. to 450.degree. C., and to pass all liberated hydrogen isotopes through the membrane to separate out the liberated hydrogen isotopes from the flow of the remaining exhaust gas, and(d) discharging the remaining decontaminated exhaust gas into the surrounding air.
Abstract:
A method and apparatus for removing tritium from heavy water and light water comprising contacting tritiated feed water in a catalyst column in countercurrent flow with hydrogen gas originating from an electrolysis cell so as to enrich this feed water with tritium from the electrolytic hydrogen gas and passing the tritium enriched water to an electrolysis cell wherein the electrolytic hydrogen gas is generated and then fed upwards through the catalyst column. The tritium content of the hydrogen gas leaving the top of the enricher catalyst column is further reduced in a stripper column containing catalyst which transfers the tritium to a countercurrent flow of liquid water.
Abstract:
New breeder blanket designs and configurations for use in a nuclear fusion reactor to breed Tritium fuel are presented. The breeder blanket designs consist of steel conduits made of different sections, formed of different steels, which are used for the circulation of liquid breeder material.
Abstract:
A method and device for limiting the degassing of tritiated waste issued from the nuclear industry are provided. The method reduces an amount of generated tritiated hydrogen (T2 or HT) and/or tritiated water (HTO or T2O) including at least one piece of tritiated waste from the nuclear industry. The method includes placing the package in contact with a mixture including manganese dioxide (MnO2) combined with a component that includes silver; and placing the package in contact with a molecular sieve.
Abstract:
A ceramic catalytic membrane reactor for the separation of hydrogen and/or isotopes thereof from fluid, in particular gaseous flows, formed of a tubular support (1) made of a porous ceramic material, which is coated with layers (4) of a gas-tight material at both ends thereof, and with a thin layer or film (2) of a metal or metal alloy having catalytic activity and selective permeability to hydrogen and isotopes thereof, such as Pd or Pd/Ag, on a central portion thereof, where the reaction takes place. The central portion is provided with heating. The seals (6) of the membrane reactor are located on the two gas-tight ends of the tubular support (1).
Abstract:
The invention concerns a method and a device for purifying a gas containing hydrogen isotopes, and for recovering the different isotopes, in particular for treating a gas coming from a thermonuclear fusion reactor. According to the invention, the gas is firstly dried in a water and CO.sub.2 adsorption stage (2), the dried gas then passes through a stage (3) in which a selective adsorption of sulphur compounds takes place and finally, the gas leaving this stage, which still contains at least some of the compounds (H,D,T).sub.2, N.sub.2, O.sub.2, CO, C(H,D,T).sub.4, is processed in a hydrogen adsorption/separation stage (4) of the zeolite type.
Abstract:
A tritium removal device for a lithium loop contains a neutron source (1) for colliding protons on a lithium flow, thereby generating neutrons, a lithium tank (11) for the lithium passing through this neutron source (1) to flow thereto through a flow passage (9), thereby temporarily accumulating it therein, and a lithium pump (17) for circulating and supplying the lithium of this lithium tank (11) to the neutron source (1) through a supply-side flow passage (9′). The lithium tank (11) and the lithium pump (17), into which hydrogen gas containing tritium therein can be easily collected, are enclosed within a hermetically sealed container (7) including an inactive gas therein, so that even if the hydrogen gas including the tritium therein is leaked into the hermetically sealed container (7), it is removed by a hydrogen isotope removal filter.
Abstract:
A method and device for limiting the degassing of tritiated waste issued from the nuclear industry are provided. The method reduces an amount of generated tritiated hydrogen (T2 or HT) and/or tritiated water (HTO or T2O) including at least one piece of tritiated waste from the nuclear industry. The method includes placing the package in contact with a mixture including manganese dioxide (MnO2) combined with a component that includes silver; and placing the package in contact with a molecular sieve.
Abstract:
The invention relates to a detritiation device comprising i) a furnace (1) for melting tritiated waste, said furnace comprising a hearth for receiving tritiated waste and a bubbling device for introducing a hydrogenated bubbling gas into the hearth during the melting and treatment of the tritiated waste in the furnace (1), and ii) a catalytic reactor with a quadrupole membrane (2) for treating the gas resulting from the melting and treatment of the tritiated waste in the furnace (1), said reactor comprising a membrane (20) for separating two flows of gas, the membrane (20) being permeable to the hydrogen isotopes. The invention also relates to an associated detritiation method.