Abstract:
The present invention relates to control devices and can most advantageously be used in load control devices for turbo-supercharged diesel engines operating over a wide range of operating conditions when frequent unsteady periods of operation caused by variations in the load take place. This control device comprises a crankshaft speed measuring mechanism, a pilot valve, a servomotor with a tailrod, a passage providing hydraulic connection of the pilot valve with the servomotor. A servomotor tailrod stroke limiter is mounted within said passage and comprises a stationary fixed casing, a sleeve and a plunger, both movable with respect to the stationary fixed casing and with respect to each other. The sleeve is connected to a pressure sensor, while the plunger, to the tail-rod of the servomotor. Such a constructional arrangement enables a separate control of the load as a function of air supply and fuel supply.
Abstract:
A governor and inversion pump drive gear for an integrated drive generator has a gear body extending from a first end to a second end. There is an enlarged disc between the first and second ends. A boss extends from the enlarged disc toward the second end and has an internal bore with spline teeth. The enlarged disc has input gear teeth at an outer periphery. A shaft portion extends from the disc to the first end. A flange is formed at a location intermediate the first end and the enlarged disc. The inner gear teeth and the drive gear teeth have unique tooth profiles. An integrated dive generator and a method are also disclosed.
Abstract:
A motor with positive torque parking positions. The motor includes a rotor which is rotatable about an axis of rotation and a stator in magnetic coupling relation with the rotor. The stator includes a plurality of teeth each having a radially extending shaft and an axially extending face. The faces of the stator teeth define an aperture for receiving the rotor and the faces of the stator teeth and the rotor define a air gap therebetween. Each stator tooth has a notch in its face that is approximately at least as wide as the shaft of the stator tooth so that the stator has a magnetic configuration relative to the rotor for parking the rotor in a rest position corresponding to a positive torque starting position. The motor also includes a winding on the shafts of the stator teeth and a control circuit for controlling current in the winding whereby an electromagnetic field is produced for rotating the rotor at a desired speed or torque during the operation of the motor.
Abstract:
Systems and methods for controlling a draft inducer for use with a furnace. The draft inducer includes a fan for moving combustion chamber gases for inducing a draft in the furnace combustion chamber that causes a pressure drop across a heat exchanger. The density of the gases flowing across the heat exchanger and the fan differs from a first operating state of the furnace to a second operating state of the furnace. A motor drives the fan in response to a motor control signal so that different motor speeds result as a function of the density of the gases flowing across the fan. A control circuit generates the motor control signal as a function of a first set of speed/torque curves until a speed signal indicates that the motor has reached a predetermined speed. After the speed signal indicates that the motor has reached the predetermined speed, the control circuit generates the motor control signal as a function of a second set of speed/torque curves. Thus, the motor will operate in accordance with the first speed/torque curves when the furnace is in the first operating state and in accordance with the second speed/torque curves when the furnace is in the second operating state.
Abstract:
A control circuit for a motor driving a fan for inducing a draft in the exhaust of a heating, ventilating and air conditioning (HVAC) system. The control circuit may be used in conjunction with either a variable pressure sensor or one or two discrete pressure sensors. A controller receives information defining the pressure set point. The information may be from a switched register or low or high pressure input signals. The motor speed/torque is increased until the pressure set point is reached.
Abstract:
The invention relates to a governor pressure controlling apparatus for vehicle transmissions including a governor pressure generator mounted on a rotational shaft for generating a governor pressure and provided with inlet and outlet ports, a governor pressure regulator provided with inlet and outlet ports and a regulating chamber, a first passage for communicating the inlet port of the governor pressure generator with a source of fluid pressure, a second passage for communicating the outlet port of the governor pressure generator with an inlet port of the governor pressure regulator, and a third passage for communicating another inlet port of the governor pressure regulator with the source of fluid pressure, whereby the regulated pressure obtained at the outlet port of the governor pressure regulator is controlled by governor pressure obtained from the governor pressure generator according to the rotational speed of the rotational shaft.
Abstract:
A fluid controlled rotary shaft speed limiting arrangement has a brake disk secured to the shaft for rotational movement therewith. A braking arrangement exerts a braking force on the brake disk according to the amount of fluid pressure present in a brake piston chamber. The flow of pressurized fluid into and the flow of pressurized fluid out of the brake piston chamber is controlled by a valve arrangement, a portion of which is formed on the brake disk. The portion of the valve arrangement formed on the brake disk effects a change in the flow of pressurized fluid through the brake piston chamber if the rotational velocity of the shaft and brake disk varies from a preselected value. Such variation in the rotational velocity corresponds to such change in pressurized fluid flow such that, a proportional braking force is exerted on the brake disk.
Abstract:
Disclosed is a speed controlled fluid pressure regulator that is adapted to provide a fluid pressure control signal for use in a variety of control functions in response to changes in rotational speed of an object such as a rotating component of an internal combustion engine. The regulator is controlled by a speed biasing mechanism that utilizes a counterbalancing arrangement between a biasing means and a component that is moved by a centrifugal weight assembly in response to changes in the rotational speed of the object being monitored to position a valve of the regulator with a high degree of sensitivity which in turn enables the regulator to provide the output fluid pressure control signal from a fluid pressure source in a highly effective manner. Also disclosed is the use of the regulator in conjunction with fluid pressure signals derived from other sources such as from changes in pressure or the position of an internal combustion engine throttle which can be used to advantage in controlling the supercharger of the engine.