摘要:
A robot simulation system includes a model placement part which places a three-dimensional container model in a virtual space and places three-dimensional workpiece models which have any postures at initial positions above the container model and a drop operation simulation part which simulates a drop operation in which the workpieces drop from the initial positions to the inside of the container by action of gravity. The robot simulation system is configured to create a bulk stacked state of workpiece models, based on the positions and postures of the workpiece models which are obtained as a result of simulation of the drop operation.
摘要:
A work cell is defined on the simulation apparatus and a robot mounting an image capturing device, a workpiece, etc. are arranged in it; a separately set visual volume model is introduced into it, a tool coordinate system (tool tip point) is defined at a view point, and a detection reference point (detection reference coordinate system) is set relating to the workpiece; a graphic jog is performed to make the robot move so that the tool coordinate system matches with the detection reference coordinate system; and a simulated correction amount by the visual sensor is designated and the display of the visual volume model is switched on and off in accordance with output/nonoutput of the image capturing command at the time of simulation of the operation program.
摘要:
Geometric information, layout information, etc. of workpieces and others are read from a CAD system etc. into a simulation system. A three-dimensional model is laid out on a screen of the simulation system by using layout plans and shape data of a robot, workpiece, and worktable. An operating-point sequence (for example, sequence of welding point) is created by specifying a point sequence, a line segment, or a plane to create a motion program. According to this motion program data, robot simulation is performed.
摘要:
There is provided an intelligent operation system that a machine or apparatus itself can comprehend and judge like humans do, operate the machine or apparatus based on such comprehension and judgment, and recognize a process and a result. An intelligent operation system 11 is constituted by an input device 12, a virtual model data base 13, a virtual model conversion device 14, a virtual model reconstruction device 15, a virtual model processing device 16, and a control device 17 or a display device 57. The virtual model conversion device 14 recognizes information concerning a plurality of objects acquired from the input device 12, specifies corresponding virtual models from the virtual model data base 13, and substitutes them for the objects. The virtual model reconstruction device 15 reconstructs the objects and a relationship between these objects into corresponding virtual models and a relationship between these virtual models in a virtual space. The virtual model processing device 16 comprehends and judges the virtual models and their relationship based on the reconstructed virtual models and their relationship, and instructs the control device 17 or the display device 57.
摘要:
Geometric information, layout information, etc. of workpieces and others are read from a CAD system etc. into a simulation system. A three-dimensional model is laid out on a screen of the simulation system by using layout plans and shape data of a robot, workpiece, and worktable. An operating-point sequence (for example, sequence of welding point) is created by specifying a point sequence, a line segment, or a plane to create a motion program. According to this motion program data, robot simulation is performed.
摘要:
A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
摘要:
A teaching data generator includes a storage device. An arithmetic device includes a first window display section to cause a display device to display a first window displaying first images respectively corresponding to some pieces of work unit job data stored in the storage device and included in teaching data. The first images are arranged in an execution order of pieces of work respectively corresponding to the some pieces of the work unit job data. A first job editing section performs an editing operation including replacing the some pieces of the work unit job data with other pieces of the work unit job data stored in the storage device, and changing the execution order. A teaching data generation section generates the teaching data based on a display content of the first window changed in accordance with the editing operation.
摘要:
A trainer for training a human to use a physical robot in a physical environment, the physical robot being controlled in the physical environment by an operator control unit, the trainer comprising an input device; a visual display; a computer connected to the input device and the visual display; and computer software disposed in the computer for creating a virtual robot and a virtual environment on the visual display, the virtual robot and the virtual environment being simulations of the physical robot and the physical environment wherein interaction between the virtual robot and the virtual environment simulates interaction between the physical robot and the physical environment.
摘要:
An offline programming device capable of automatically generating a measuring program by which the time and the workload for making an offline program may be greatly reduced. The offline programming device includes a storing part for storing a plurality of data in relation to a plurality of measurement points of the object and the position and the orientation of a vision sensor relative to the movable part of the robot; a calculating part for calculating the position and the orientation of the vision sensor relative to each measurement point when the measurement point is measured; a measuring program making part for making at least one measuring program, based on the plurality of data stored in the storing part, by means of which the position and the orientation of the vision sensor may be achieved; an evaluating part for evaluating the at least one measuring program according to a predetermined evaluative criteria; and a selecting part for selecting a measuring program, from the at least one measuring program, which satisfies the predetermined evaluative criteria.
摘要:
An offline programming device capable of automatically generating a measuring program by which the time and the workload for making an offline program may be greatly reduced. The offline programming device includes a storing part for storing a plurality of data in relation to a plurality of measurement points of the object and the position and the orientation of a vision sensor relative to the movable part of the robot; a calculating part for calculating the position and the orientation of the vision sensor relative to each measurement point when the measurement point is measured; a measuring program making part for making at least one measuring program, based on the plurality of data stored in the storing part, by means of which the position and the orientation of the vision sensor may be achieved; an evaluating part for evaluating the at least one measuring program according to a predetermined evaluative criteria; and a selecting part for selecting a measuring program, from the at least one measuring program, which satisfies the predetermined evaluative criteria.