Abstract:
A Multi-Purpose Dynamic Simulation and run-time Control platform includes a virtual process environment coupled to a physical process environment, where components/nodes of the virtual and physical process environments cooperate to dynamically perform run-time process control of an industrial process plant and/or simulations thereof. Virtual components may include virtual run-time nodes and/or simulated nodes. The MPDSC includes an I/O Switch which delivers I/O data between virtual and/or physical nodes, e.g., by using publish/subscribe mechanisms, thereby virtualizing physical I/O process data delivery. Nodes serviced by the I/O Switch may include respective component behavior modules that are unaware as to whether or not they are being utilized on a virtual or physical node. Simulations may be performed in real-time and even in conjunction with run-time operations of the plant, and/or simulations may be manipulated as desired (speed, values, administration, etc.). The platform simultaneously supports simulation and run-time operations and interactions/intersections therebetween.
Abstract:
Examples described herein relate to a system. In some examples, the system includes an interface and circuitry, coupled to the interface. In some examples, the circuitry, when operational, is to: based on detection of multiple management controllers, select a primary management controller and a secondary management controller from among the multiple management controllers. In some examples, the primary management controller is to perform at least one different operation than that of the secondary management controller, the primary management controller comprises a baseboard management controller (BMC), the secondary management controller comprises a BMC, and the multiple management controllers are positioned in at least one programmable network interface device and a host system.
Abstract:
A pressure and flow calculation technique can be used in a distributed process network simulation system that uses the sequential solving method to perform better or faster simulations of a process flow, especially with respect to process junction nodes at which flow either converges or diverges. The pressure and flow variable determination technique uses a grouped node identification technique that identifies a local set of nodes for each junction node of the process network to use when solving for the pressure at the junction node, a grouped node iteration technique that uses the grouped set of nodes at each junction node to perform iterative pressure calculations at the junction node, and a flow-based pressure calibration technique at each junction node to enable the system to perform highly accurate pressure and flow variable determination at each junction node in real-time.
Abstract:
A multi unit controller has a plurality of base units each of which includes a control unit connector, a base unit connector through which the base units juxtaposed to each other are connected to each other, and a plurality of control units connected to the base units respectively through the respective control unit connector, wherein the base units juxtaposed vertically.
Abstract:
The invention provides a computer system for realtime control of machines. The computer system continually switches between a realtime programs EP providing control of peripheral devices A1, An, including control and/or regulation, and other programs within the realtime clock periods. The computer system has communications system KS and a a control system SS connected to the peripheral devices A1, An, particularly motor driver devices, over the communications system KS. A realtime clock signal T is generated from an independent cyclic communications clock T2 of the communications system KS, which has a communications processor KP that operates in realtime. When the control processor SP is remote from the communications processor KP, the realtime clock T may be regenerated an incoming bus clock signal B by a counter Z having upper and lower thresholds K2 and K1.
Abstract:
A field bus interface board is disclosed. The field bus interface board installed in a computer and connected to a field bus line has a main controller for controlling the entire operation of the field bus interface board. A field bus controller controls a data transmission and reception though the field bus line. A dual-port memory is shared between the computer and the main controller for exchanging data with the computer. A buffer memory buffers data transmitted to the field bus line or received from the field bus line, under the control of the field bus controller. A field bus interfacing means transmits data to the field bus line or receives data from the field bus line, under the control of the field bus controller.
Abstract:
There is disclosed a copying or printing apparatus utilizing sequence control with micro-computer and capable of preventing erroneous function at the start of power supply. The apparatus is provided with plural processors for image reproduction, a controller for controlling some of the processors and switch for power supply for energizing the controller and the processors. The controller is reset in response to the actuation of said power supply switch, and then said processors are energized.
Abstract:
A glass forming system having a plurality of machines, each of which includes a plurality of individual sections having movable components which operate in timed relationship with respect to one another. An electronic control system effects the automatic synchronous operation of the various individual sections of each machine to thereby automatically and continuously form hollow glass articles. The electronic control system includes a mini computer with associated storage units for storing data for controlling the operation of the glass forming machinery. Information is written into and read out of the mini computer by means of a printer and cathode ray tube console. An electronic interface unit connects commands from the mini computer to the control circuits for each of the sections of the glass forming machines and a group function machine component time varying circuit is connected to the mini computer via the electronic interface unit for changing the timing of selected groups of components in each of the individual sections of the glass forming machinery.
Abstract:
A sequence controller for parallel and other operations by way of mutual interlocking with other controllers is disclosed having flags which may be set and reset not only by predetermined user instructions therein but also by user instructions in another equivalent controller connected thereto by a common bus, and controlling the flags so that the statuses of the flags may be evaluated in accordance with predetermined user instructions and utilized as operational conditions.
Abstract:
A separate sequence controller is connected to each washer within a multiple washer laundry system for controlling the sequential operations of that washer. Each of the controllers has an intercommunication channel to every other one of the controllers. The controllers are operable to intercommunicate by signals through those channels to operate together on the basis of those signals to permit only one washer at a time to perform a common function that is to be performed by only one washer at a time.