摘要:
The present invention can realize both a transmission type and a reflection type, and provides a holographic microscope which can exceed the resolution of the conventional optical microscope, a hologram data acquisition method for a high-resolution image, and a high-resolution hologram image reconstruction method. In-line spherical wave reference light (L) is recorded in a hologram (ILR) using spherical wave reference light (R), and an object light (Oj) and an illumination light (Qj) are recorded in a hologram (IjOQR) using a spherical wave reference light (R) by illuminating the object with an illumination light (Qj, j=1, . . . , N) which is changed its incident direction. From those holograms, a hologram (JjOQL), from which the component of the reference light (R) is removed, is generated, and from the hologram, a light wave (hj) is generated. A light wave (cj) of the illumination light (Qj) is separated from the light wave (hj), and using its phase component (ξj=cj/|cj|), a phase adjustment reconstruction light wave is derived and added up as (HP=Σhj/ξj), and an object image (SP=|HP|2) is reconstructed.
摘要翻译:本发明可以实现透射型和反射型,并且提供可以超过常规光学显微镜的分辨率的全息显微镜,用于高分辨率图像的全息图数据获取方法和高分辨率全息图像重构 方法。 使用球面波参考光(R)将球面波参考光(L)记录在全息图(ILR)中,并且将目标光(Oj)和照明光(Qj)记录在全息图(IjOQR)中,使用 通过以改变其入射方向的照明光(Qj,j = 1,...,N)照亮物体的球面波参考光(R)。 从这些全息图中,产生去除了参考光(R)的分量的全息图(JjOQL),并且从全息图产生光波(hj)。 照明光(Qj)的光波(cj)与光波(hj)分离,使用其相位分量(ξj= cj / | cj |),导出相位调整重建光波,并相加为 (HP =Σhj/ξj),并且重建对象图像(SP = | HP | 2)。
摘要:
Provided is an observation device which can obtain a phase image of a moving object rapidly with high sensitivity even when using a photodetector having a slow read-out speed per pixel. The observation device 1 comprises a light source 10, a first modulator 20, a second modulator 30, a lens 40, a beam splitter 41, a photodetector 46, and an arithmetic unit 50. The lens 40 receives scattered light generated by a moving object 2 and forms a Fourier transform image of the object 2. The photodetector 46 outputs data representing a sum in a v direction of data temporally changing at a frequency corresponding to a Doppler shift frequency of the light having reached each position on a light-receiving surface through the lens 40 at each position in a u direction at each time. The arithmetic unit 50 obtains an image of the object 2 according to the output of the photodetector 46.
摘要:
There is disclosed an optical heterodyne scanning holography device capable of recording and reconstructing a holographic image of an object in real time by optical heterodyne-scanning the object, capturing a scattered wave from the object by a photodetector, and converting a heterodyne output current from the photodetector to a spatial light modulator for coherent processing optically.
摘要:
The invention relates to a system (400) for acquiring images by means of heterodyne digital holography, comprising an image sensor (409) having at least one photodiode coupled to an oversampling analog-digital converter.
摘要:
The invention relates to a digital holography method for detecting the vibration amplitude of an object (15) having a vibration frequency ω, comprising: generating object illumination waves (Wt) and reference waves (WLO); acquiring interferograms between the reference wave (WLO) and a signal wave (W≯) by means of a bandwidth a s detector (19), the reference wave comprising two components ELO, ELO1 of frequencies ω1, ω2 that are respectively staggered in relation to the laser frequency ωL by a quantity δ1=γ1ω, and δ2=qω+γ2ωδ, where q is an integer and −0.5≦γ1, γ2≦0.5; and calculating the vibration amplitude of the object from the optical beats spectrum deduced from the complex amplitude of an interferogram.
摘要:
A method for irradiating a medium includes irradiating the medium with an electromagnetic wave which is scattered in the medium and modulated in frequency at a position in the medium; obtaining information corresponding to an interference pattern generated by interference between the modulated electromagnetic wave and a reference wave; and generating a phase conjugate wave, based on the obtained information, which irradiates the medium.
摘要:
A high resolution 3-D holographic camera. A reference spot on a target is illuminated by three spatially separated beamlets (simultaneously produced from a single laser beam), producing a lateral shear of a wavefront on the target. The camera measures the resulting reflected speckle intensity pattern which are related the gradient of the interfered complex fields. At the same time a flood beam illuminates the entire target and reflected speckle is also recorded by the same camera to provide the necessary object spatial frequencies. The illumination patterns are sequenced in time, stepping through offset phase shifts to provide data necessary to reconstruct an image of the target from the recorded reflected light. The reference spot phase and amplitude are then reconstructed, and the reference spot's complex field is then digitally interfered with the flood illuminated speckle field by use of a special algorithm. In order to obtain a high resolution 3D image of the target, a second measurement is acquired with the laser beam slightly shifted in frequency to second color.
摘要:
A holographic imaging system may include an optical source configured to output a source beam and a splitter configured to split the source beam into a reference beam and an object beam that may be incident on a target to form a scattered object beam. The system may also include a combiner configured to combine the filtered scattered object beam with the reference beam to form an interference beam, an imaging array configured to receive the interference beam and generate frames of raw holographic data based on measurements of the interference beam over time, and an image data processor. The image data processor may be configured to receive the frames of raw holographic data from the imaging array, remove data components within the frames that are associated with the particle motion having a motion frequency that is less than a movement frequency threshold to form conditioned raw holographic data, and generate an image based on the conditioned raw holographic data.
摘要:
Provided is an observation device which can obtain a phase image of a moving object rapidly with high sensitivity even when using a photodetector having a slow read-out speed per pixel. The observation device 1 comprises a light source 10, a first modulator 20, a second modulator 30, a lens 40, a beam splitter 41, a photodetector 46, and an arithmetic unit 50. The lens 40 receives scattered light generated by a moving object 2 and forms a Fourier transform image of the object 2. The photodetector 46 outputs data representing a sum in a v direction of data temporally changing at a frequency corresponding to a Doppler shift frequency of the light having reached each position on a light-receiving surface through the lens 40 at each position in a u direction at each time. The arithmetic unit 50 obtains an image of the object 2 according to the output of the photodetector 46.
摘要:
Provided is an observation device which can obtain a phase image of a moving object rapidly with high sensitivity even when using a photodetector having a slow read-out speed per pixel. The observation device 1 comprises a light source 10, a first modulator 20, a second modulator 30, a lens 40, a beam splitter 41, a photodetector 46, and an arithmetic unit 50. The lens 40 receives scattered light generated by a moving object 2 and forms a Fourier transform image of the object 2. The photodetector 46 outputs data representing a sum in a v direction of data temporally changing at a frequency corresponding to a Doppler shift frequency of the light having reached each position on a light-receiving surface through the lens 40 at each position in a u direction at each time. The arithmetic unit 50 obtains an image of the object 2 according to the output of the photodetector 46.