Abstract:
The present application relates to a photon measuring and reading device, which belongs to the field of detection equipment, including a mounting seat and a photon counter. The photon counter can move up and down on the mounting seat. The mounting seat is provided with a vertically arranged sliding trough, and the photon counter is provided with a sliding rod slidably connected with the sliding trough. A double head motor is arranged on the mounting base, and a linkage mechanism is arranged between the output shaft at the tail end of the double head motor and the sliding rod. The bottom end of the photon counter is fixed with a box body.
Abstract:
The present invention is a window pane assembly system and method utilizing locking a locking system for easy insertion of a second window pane and an electro kinetic strip or film on these window panes. These electrokinetic strips and films have the capability to do many things on the window panes like changing the opacity of the windows and allowing certain levels of light through the window. The use of this technology can create more opportunities for creating advertisements on window surfaces, storing energy or repelling solar energy for building temperature management and energy savings. The electrokinetic film can be used with a remodel of window panes or the electrokinetic strips and films can be built into new window panes. With the ability of the electrokinetic devices to allow certain levels of light in, there is the opportunity for many more technological advancements on the window panes. The electrokinetic film may incorporate a matrix of densely packed apertures with scalable shutters, to attenuate light transmission through the window pane assembly.
Abstract:
Embodiments of the present disclosure include an apparatus with a camera. A shutter is positioned horizontally in front of the lens of the camera. The shutter is configured to move in front of a lens of the camera and is further configured to move orthogonally to the horizontal axis so as to at least partially obscure the lens of first camera in a closed shutter position. The apparatus further includes a motor positioned horizontally behind the front of the lens of the camera. The motor is configured to move the shutter orthogonally to the horizontal axis between the closed shutter position and an open shutter position.
Abstract:
The present invention comprises: a base; a housing disposed at one side of the base; a lens barrel disposed inside the housing; a cover disposed at one side of the housing; a first substrate disposed at the other side of the base; an image sensor which is installed on the first substrate, and disposed below the lens barrel; a diaphragm set which is movably supported inside the housing and which adjusts the amount of light incident to the lens barrel; a first drive unit comprising a first coil and a first magnet which enable the lens barrel and the diaphragm set to move together in the optical axis direction; and a second substrate which is attached to the housing and comprises a plurality of terminals which protrude to the outside as a result of the drive of the first drive unit, wherein the diaphragm set has a second drive unit for driving the diaphragms disposed therein, and the terminals are also connected to the second drive unit.
Abstract:
A film is formed on a sliding surface of a component. The film contains fluororesin. The film includes a surface structure in which convex portions are joined with each other like a mesh. Each of the convex portions is formed by particles of fluororesin having aggregated.
Abstract:
There are provided a blade drive device and an optical instrument. The blade drive device includes a substrate that has an opening, a front curtain and a rear curtain that are movable along an opening surface of the opening so as to open and close the opening, a front curtain locking portion that interlocks with opening and closing operations of the front curtain, a rear curtain locking portion that interlocks with opening and closing operations of the rear curtain, a regulation lever that is configured to be pivotally movable around a lever axis, that enters an operation trajectory of the front curtain locking portion and the rear curtain locking portion, and that is capable of entry and escape between an entry position for regulating the movement of the front curtain and the rear curtain in a closing direction and an escape position escaped from the operation trajectory, a regulation electromagnetic actuator that is configured to be rotatable around a regulation axis, and a linkage lever that causes the regulation lever to pivot around the lever axis in response to the rotation around the regulation axis of the regulation electromagnetic actuator. The regulation lever and the linkage lever engage with each other while being provided with play in a circumferential direction around the regulation axis.
Abstract:
In one embodiment of an enclosure device, a camera casing and light source casing are secured to a plate frame, and the enclosure device is configured to be mounted to an arm, such as a robotic welding arm. A shutter mounting arm may also be secured to the plate frame. A flap may be pivotally mounted to the distal end of the shutter mounting arm, such that the flap may be actuated between a first and second position by an actuator cooperatively engaged with the flap. The first position may be defined as to protect a camera lens positioned in the camera casing and a light source lens positioned in the light source casing. The second position may be defined as to not obscure a line-of-sight from either the light source and/or the camera to the work piece on the arm. A light source casing may be sandwiched between two side plates that are generally configured as mirror images of one another. The light source casing housing a light source may be configured as a laser designed to measure distances.
Abstract:
An apparatus for improving contrast in an image captured by an imaging sensor. The apparatus including: an objective optical system positioned in an optical path of illumination light on an object; an image sensor positioned in the optical path such that light from the objective optical system is incident on the image sensor; a device having a variable transparency positioned at a focal plane of the objective optical system; and a processor configured to: detect a bright spot on the image sensor; and control the device to change a transparency of a portion of the device corresponding to the detected bright spot.
Abstract:
An apparatus including a camera shutter having a shutter window therethrough; a shutter drive connected to the camera shutter; and an aperture member having an aperture therethrough. The shutter drive includes at least one magnet and at least one coil. The shutter drive is configured to move the camera shutter when the coil is activated. The shutter window is sized and shaped to be moved into registry with the aperture. The shutter window is substantially at least as large as the aperture.
Abstract:
An apparatus for use with an electronic device having a camera. The apparatus comprises a structure configured to detachably couple to the device, and a shutter supported by the structure and comprising a lens shutter configured to obscure a lens of the camera when in an engaged position.