Abstract:
A coupling device is provided for a sensor unit having at least one sensor located within a housing. The coupling device includes at least one supporting portion, wherein the supporting portion is configured for maintaining the sensor unit in a stable position, with the coupling device either resting on or being buried into the ground, and at least one rod, arranged in a plane which is essentially perpendicular to a peripheral surface of the supporting portion and linked to the supporting portion. The coupling device further includes a fastener for connecting the sensor unit to the coupling device. The supporting portion maintains the sensor unit in a stable position when resting on the ground, while the rod provides an additional stiffness to the housing.
Abstract:
A system and method for improved coupling of geophysical sensors is disclosed. The method includes determining conditions at an installation location, and selecting a sensor assembly. The sensor assembly includes a threaded device having a shaft with a foot and a head. The threaded device has a cavity that is open at the foot and extends inside the shaft from the foot to the head. The sensor assembly further includes a baseplate configured to couple to the threaded device. The method also includes preparing the installation location for installation of the selected sensor assembly and installing the selected sensor assembly at the installation location.
Abstract:
A nodal geophysical sensing system includes a ground contact sleeve defining an interior space and having at least one feature on an exterior thereof for contacting and compressing ground materials adjacent the exterior. A nodal geophysical sensor having a housing engages at least one feature on the interior space so as to enable acoustic energy transmission between the ground contact sleeve and the housing.
Abstract:
Systems, methods, and apparatuses related to coupling an autonomous seismic node to the seabed. In one embodiment, the node may comprise a plurality of holes on a bottom surface of the node and a plurality of openings on one or more sides and/or surfaces of the node. The bottom surface may comprise a coupling plate that is coupled to the node and/or coupled to a housing or casing that substantially surrounds a pressure node housing. The node may be configured to route water vertically from the bottom holes through the side openings and/or upper holes to decrease the potential of cavitation and fluidization of the seismic sediment and increase the seismic coupling of the node to the seabed.
Abstract:
Marine surveys using vertically oriented sensor streamers. At least some embodiments are vertically oriented sensor streamers where each sensor streamer includes: an elongated outer jacket; a plurality of hydrophones coupled to the outer jacket, each hydrophone of the plurality of hydrophones longitudinally spaced along the outer jacket; a plurality of three-axis motion detectors, each three-axis motion detector of the plurality of three-axis motion detectors longitudinally spaced along the outer jacket; and a plurality of electrodes coupled to the outer jacket, each electrode of the plurality of electrodes longitudinally spaced along the outer jacket, and the plurality of electrodes electrically exposed outside the outer jacket. Other embodiments may also comprise a plurality of electrodes on each sensor streamer, the electrodes for measuring electromagnetic energy.
Abstract:
A sensor flap for a downhole tool. The downhole tool is positionable in a wellbore penetrating a subterranean formation. The sensor flap includes a sensor housing and at least one sensor. The sensor housing is operatively connectable to the downhole tool. The sensor housing is movably positionable between a retracted position in the downhole tool and an extended position in contact with a wall of the wellbore. The sensor is positionable in the sensor housing, and may include a seismic detector to measure seismic activity when the sensor housing is in contact with the wall of the wellbore.
Abstract:
A pseudo rock includes a housing, a strain sensor, a three-axis acceleration sensor, a vibration generator and a controller. The housing has an average shape and size of rocks. The strain sensor detects a stress acting in positive and negative directions of each axis with respect to three-dimensional coordinates using the center of the housing as the origin. The three-axis acceleration sensor detects acceleration acting in each axis of the three-dimensional coordinates. The vibration generator produces vibration in a specific direction with respect to the three-dimensional coordinates. The controller converts respective detected values of the strain sensor and the three-axis acceleration sensor into vibration pulses of specific patterns and outputting the vibration pulses to the vibration generator.
Abstract:
Marine surveys using vertically oriented sensor streamers. At least some embodiments are vertically oriented sensor streamers where each sensor streamer includes: an elongated outer jacket; a plurality of hydrophones coupled to the outer jacket, each hydrophone of the plurality of hydrophones longitudinally spaced along the outer jacket; a plurality of three-axis motion detectors, each three-axis motion detector of the plurality of three-axis motion detectors longitudinally spaced along the outer jacket; and a plurality of electrodes coupled to the outer jacket, each electrode of the plurality of electrodes longitudinally spaced along the outer jacket, and the plurality of electrodes electrically exposed outside the outer jacket. Other embodiments may also comprise a plurality of electrodes on each sensor streamer, the electrodes for measuring electromagnetic energy.
Abstract:
A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings, An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
Abstract:
Systems and methods are implemented for evaluating underground structures and objects, particularly relatively shallow underground structures and objects, using a seismic or acoustic source signal and a resulting seismic or acoustic wave. A discrete or unitary apparatus incorporates both a seismic source transducer and a receiver transducer within a common housing or frame. A unitary seismic probe includes a ground engaging member and a seismic source mechanically coupled to the ground engaging member. The probe further includes a sensor assembly mechanically coupled to the ground engaging member and configured to sense ground vibrations resulting from an impact to the ground engaging member by the seismic source.