Abstract:
Systems and methods for temperature coefficient of offset compensation for a resistance bridge are disclosed. In one aspect, one or more current sources are added in parallel to resistance elements within a resistance bridge. The current source(s) may be selectively switched on and adjusted by a control circuit based on readings from a temperature sensor. In this fashion, the temperature induced variations in the resistance may be canceled or corrected allowing for better performance of the resistance bridge.
Abstract:
Apparatus and associated methods relate to sensing pressure and mitigating the error introduced by the thermoelectric effect. A pressure sensing device includes a pressure sensor, a temperature sensor, and an error correction device. The pressure sensor produces a voltage output proportional to a sensed pressure. The temperature sensor measures a first temperature at a first location and a second temperature at a second location to produce a temperature difference signal. The error correction device modifies the pressure output proportionally to the temperature difference signal to produce a temperature adjusted pressure output which compensates for error introduced from the temperature difference.
Abstract:
A sensor element that has high measurement precision by providing a resistance-change length ratio corresponding to a direction-specific extension length is provided. The sensor element includes an element body disposed in a sensor body to measure a temperature and a pressure and having a diaphragm deformed based on the temperature or the pressure. Additionally, the sensor element includes pressure-measuring resistors including a second resistor portion and a fourth resistor portion disposed along a diametric direction with respect to a center of an upper surface of the diaphragm and in an extension section on the upper surface of the diaphragm and a first resistor portion and including a third resistor portion disposed outside the second resistor portion or the fourth resistor portion in a compression section on the upper surface of the diaphragm to eliminate a resistance change caused by a pressure-specific temperature change.
Abstract:
A physical quantity detector includes: a bridge circuit portion that includes a bridge circuit including a first, second, third, and fourth strain gauges each having a resistance value that changes in response to an application of a physical quantity and to temperature, the bridge circuit portion outputting, as a first detection signal, a first voltage, and outputting, as a second detection signal, a second voltage; a temperature characteristic adjustment portion that is connected in parallel to the bridge circuit portion, and outputs, as a third detection signal, a third voltage corresponding to the input voltage; a first signal processing circuit portion that receives the first and second detection signals, and outputs a first differential voltage; and a second signal processing circuit portion that receives the second and third detection signals, and outputs a second differential voltage.
Abstract:
A method for determining a value of a parameter of an object or an environment includes positioning a device having a balanced circuit in or on an object or within a particular environment, wherein the balanced circuit comprises elements which are operationally sensitive to changes in a parameter of the object or the environment. The method further includes measuring a common mode signal of the balanced circuit and determining, from the common mode signal, a value of the parameter. An exemplary implementation of the method includes determining temperature using a resistive sensor having a Wheatstone bridge circuit with two variable resistors and two fixed resistors. Embodiments of systems and devices configured to employ such methods are provided, particularly medical probes, electronic signal monitoring devices, and systems employing such devices.
Abstract:
The invention relates to a clamp element for a temperature-independent turgor pressure measurement device for measuring the turgor pressure in a plant sample.
Abstract:
The invention relates to a pressure sensor device comprising a membrane body in the form of a membrane whose first side is exposed to a working medium whereas the second side thereof is arranged oppositely to the first side. The inventive device also comprises at least one pressure sensor element (16, 18) for detecting the extension or compressive strain of the membrane body produced by the working medium pressure. A temperature sensor element (22) for detecting the membrane body temperature is mounted thereon.
Abstract:
Implantable pressure sensors and methods for making and using the same. A feature of at least some of the subject pressure sensors is that they are low-drift sensors. Additional features of representative pressure sensors include the presence of at least one strain transducer that is fabricated from a stable gauge material. The subject pressure sensors find use in a variety of applications.
Abstract:
Implantable pressure sensors and methods for making and using the same are provided. A feature of embodiments of the subject pressure sensors is that they are low-drift sensors. The subject sensors find use in a variety of applications.
Abstract:
It is an object to provide a method of adjusting a pressure sensor, in which adjustment of a diaphragm portion and adjustment of an amplification circuit connected to the diaphragm portion are simplified. A flexible circuit board having the amplification circuit mounted thereon is connected to a diaphragm member having the diaphragm portion formed with gauge resistances, and offset, span and temperature-compensating adjustment resistances, and adjustment of the adjustment resistances formed on the diaphragm member is performed in this state. The adjustment on the side of the diaphragm member including the amplification circuit accommodates adjustment deviation on the amplification circuit, and hence adjustment of the whole pressure sensor can be achieved by a single adjustment process. The adjustment process thus simplified can reduce manufacturing costs.