摘要:
The flow rate control device 10 includes a control valve 11, a restriction part 12 provided downstream of the control valve 11, an upstream pressure sensor 13 for measuring a pressure P1 between the control valve 11 and the restriction part 12, a differential pressure sensor 20 for measuring a differential pressure ΔP between the upstream and the downstream of the restriction part 12, and an arithmetic control circuit 16 connected to the control valve 11, the upstream pressure sensor 13, and the differential pressure sensor 20.
摘要:
A pressure difference sensor for providing a pressure measurement signal, comprising: a pressure difference measuring cell, which is suppliable with first and second pressures and which outputs the pressure measurement signal; first and second ceramic stiffening elements, each of which is joined with the pressure difference measuring cell and has a duct, via which the first, respectively the second, pressure is suppliable to the pressure difference measuring cell; a platform with first and second pressure input openings, each of which extends from a first surface to a second surface of the platform, wherein the pressure input openings are sealed on the first surface, each with its own isolating diaphragm, and first and second pressures tubes, which are arranged between the stiffening elements and the platform, and wherein each of the first pressure tube and the second pressure tube has at least one bend in a region between the platform and a first, respectively second, connecting area of the corresponding pressure tube.
摘要:
One or more electroactive polymer (EAP) strips are circumferentially or lengthwise embedded or mounted around the fluid passage member. The EAP strips change electrical characteristics (e.g., capacitance, resistance) independent of an applied actuation as they are stretched, so they may be used to measure fluid pressure and/or fluid flow rate.
摘要:
A system to detect a pressure difference between the interior of a cabin of an aircraft and the exterior of the aircraft. The system includes a window arrangement having a first windowpane with a first surface and an opposite second surface and is adapted to be mounted in an aircraft such that the first surface of the first windowpane faces the exterior of the aircraft and is subjected to ambient outside atmospheric pressure and the second surface faces the cabin interior, and a pressure sensor including a first pressure port. The first windowpane includes a first air passage opening extending between the first and second surfaces of the first windowpane, and the pressure sensor is sealingly connected to the first air passage opening such that the first pressure port of the pressure sensor is subjected to pressure acting on the first surface of the first windowpane.
摘要:
One or more electroactive polymer (EAP) strips are circumferentially or lengthwise embedded or mounted around the fluid passage member. The EAP strips are configured to function as a pump when a prescribed electrical charge is applied and removed from the EAP strips, which causes the EAP strips to expand and constrict accordingly. A series of these strips may be mounted along a portion of the fluid passage member and electrically actuated in a prescribed manner to exert a squeezing force around the fluid passage member, which functions to pump fluid through the fluid passage member. The EAP strips also change electrical characteristics (e.g., capacitance, resistance) independent of the applied actuation as they are stretched, so they may be used to measure fluid pressure and/or fluid flow rate.
摘要:
A pressure sensor includes a fill tube which is arranged to couple to a process pressure. A sensor is coupled to the fill tube and is configured to measure pressure of fluid in the fill tube as a function of a change of a physical property of the fill tube. Circuitry is provided to measure pressure using the pressure sensor, and to measure pressure based upon the change of the physical property of the fill tube.
摘要:
The ultra-precision micro-differential pressure measuring device comprises a device body 1 having an inner space part therein, a pressure receiving plate 3 which is installed inside the inner space of the device body 1 and divides the said inner space hermetically into a lower space 7 and an upper part space 8, an electronic weighing and pressure converting device 2 which is installed in the lower space 7, and supports and secures the pressure receiving plate 3, and a liquid sealing part R which liquid-seals the outer peripheral part of the afore-mentioned pressure receiving plate 3 and maintains the air-tightness between the lower space 7 and the upper space 8. A micro-differential pressure between a pressure P1 inside the upper space 8 and a pressure P2 inside the lower space 7 is measured by the electronic weighing and pressure converting device 2 through the pressure receiving plate 3.
摘要:
There is disclosed a measurement mechanism for differential pressure measurement. The mechanism has two housing portions with flanges. A differential pressure sensor is force-fit between the two flange faces. An electronics board is connected to the differential pressure sensor by means of a force-fit electrical contact.