Abstract:
This disclosure provides an optical interferometer including a multi-faceted optical element that is rotated to introduce an optical path length difference between two different optical paths in the interferometer. The multi-faceted optical element can be configured to be rotated about an axis such that the optical path length difference between the first and second optical paths varies between a first value and a second value several times during one complete rotation of the optical element. The multi-faceted optical element can be rotationally symmetric having n-fold rotational symmetry. The two different optical paths can be non-coplanar with respect to each other and the multi-faceted optical element can be disposed in one of the optical paths or both the optical paths.
Abstract:
A novel tilt-insensitive interferometer geometry is described. The design uses tilt-insensitive optics to simultaneously maintain high throughput and precise interferometric alignment, even in the presence of non-ideal scanning motions. A variety of enhancements to the basic design are described, providing a family of related interferometer designs. These spectrometers have applications in spectrometry, spectral imaging and metrology.
Abstract:
A Fourier transform interferometer for rapid scanning of scenes such as explosions wherein an incoming beam of light to be analyzed is split by a beam splitter into a first portion and a second portion. The first portion of the incoming light is sent down one arm of the interferometer where it passes through a rotating scanning cube for changing the path length in that arm of the interferometer. The light is then reflected by a retro mirror and sent back through the scanning cube to the beam splitter for sending a portion of the returning beam to a detector. The second portion of the incoming light is sent down a second arm of the interferometer where it passes through a compensator. The light is then reflected by a retro mirror and sent back through the compensator to the beam splitter for sending a portion of the returning beam to a detector. The first and second portions of the incoming light having differing path lengths interfere and the detector measures the fringes created.
Abstract:
Dichroism measurement apparatus includes interferometer means for processing linearly polarized source radiation to provide a beam characterized, for each wavelength, by ellipticity that alternates between left and right circular polarization and between which the beam polarization becomes linear in one direction as the ellipticity alternates from left to right circular polarization, and linear in the orthogonal direction as the ellipticity alternates from right to left circular polarization, the characteristic frequency Nu a of such alternation varying as a function of the wavelength. The interferometer means comprises relatively fixed and movable prisms, both having axes at 45* to the linear polarization direction, and actuating means for effecting such relative movement of said prisms to control the frequencies Nu a.
Abstract:
A pseudo-active chemical imaging sensor including irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. The sensor may be applied to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor measures and processes a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.
Abstract:
Described herein is a hyperspectral imaging system in which a polarising beam splitter, a Wollaston prism, an optical system, and a plane mirror are arranged on an optical axis of the imaging system. An imaging detector is provided on which radiation is focused by an imaging lens. The Wollaston prism is imaged on itself by the optical system and the plane mirror so that translation of the Wollaston prism in a direction parallel to a virtual split plane of the prism effectively provides an optical path length difference that is the same for all points in the object field.
Abstract:
The present invention is related to a Fourier-transform spectrometer arrangement comprising a first polarizer, a birefringent plate, a pair of birefringent wedges, a second polarizer, a photo detector, and a control unit. According to the invention, the cross sections of the two birefringent wedges of the birefringent wedge pair are similar triangles, the first wedge is fixed, the second wedge is capable of linearly movement along the side, the optic axes of the pair of birefringent wedges are parallel to each other and orthogonal to the optic axis of the birefringent plate, the polarization of the first polarizer is in 45 degrees with the optical axis of the birefringent plate, the polarization of the first polarizer is also in 45 degrees with the optical axis of the pair of birefringent wedges, the polarization of the second polarizer is parallel, or orthogonal, to the polarization of the first polarizer.
Abstract:
The present invention relates to an imaging apparatus and comprises input and output polarisers, a first polarising beam splitter and at least one additional polarising beam splitter, a light sensitive detector and focussing means arranged on an axis. The input polariser resolves incident light into a single linear polarisation state. The first polarising beam splitter receives light from the input polarises, and resolves it into equal magnitude orthogonally polarised rays which are mutually spaced and have a path difference therebetween. The or each additional polarising beam splitter is arranged to receive light from the first polarising beam splitter. The transmission axis of the output polariser is parallel to or perpendicular to the transmission axis of the input polarises to resolve the orthogonally polarised light rays having past through the or each additional polarising beam splitter into the same or perpendicular polarisation state as light resolved by the, first polariser. The first polarising beam splitter, the or each additional polarising beam splitter and the focussing means are mutually spaced such that said mutually spaced rays are brought to coincidence whereby interference fringes are produced, the detector being arranged to detect the interference fringes. One beam splitter is mounted for movement perpendicular to said axis, whereas the other beam splitter(s) is/are rigidly mounted against movement.
Abstract:
The polarization interferometer comprises a source of light (1), a collimator (2), a first polarizing means (3), a double-refractive means (4,5,6) and a second polarizing means (7) which polarizes the light emerging from the double-refractive means (4,5,6) and directs it to a photon detector (8). The double-refractive means (4,5,6) consists of two optical wedges (5,6) displaceable along those lateral surfaces which face each other, said wedges complementing each other to a right parallelepiped, and of a double-refractive, plane-parallel plate (4) serving as a compensator. The optical axis of the compensator (4) is twisted in a plane perpendicular to the light beam by a finite angle relative to that of the two wedges (5,6), the optical axes of the two wedges (5,6) coinciding with each other. The optical axes of the two polarizing means (3,7) are arranged perpendicularly or parallely to each other and are aligned non-parallely to the axes of the two wedges (5,6) of the double-refractive means (4,5,6).
Abstract:
A refractively scanned interferometer, of the type in which a wedge-shaped prism is moved across one interferometer arm for scanning purposes, in which both the substrate of the beamsplitter and the scanning wedge are optically compensated for by substantially identical elements in the other arm of the interferometer.