Abstract:
An excavation measurement system includes a sensor to be mounted on excavation equipment to establish a light curtain in an excavation area, the light curtain to measure a parameter of the excavation area, and an interface to communicate the measure of the parameter of the excavation area.
Abstract:
The technology relates to a system and method for monitoring an environment. The method comprises receiving first and second sets of data from a plurality of mobile units, wherein the first set of data is associated with a first temporal indicator, the second set of data is associated with a second temporal indicator and each mobile unit comprises: a position determining device configured to generate position data associated with a position of the mobile unit within the environment, and a laser scanning device configured to generate scan data based on a scan of at least part of the environment; determining a first parameter associated with the first set of data; determining a second parameter corresponding to the first parameter and associated with the second set of data; and determining a difference between the first and second parameters.
Abstract:
Described herein is a method of determining a mine worksite's terrain. The method may include determining positions of a surface of the worksite based on measurements relating to the worksite's terrain. At least some of the measurements may be received from a plurality of mobile machines on the worksite. The method may include transmitting a first subset of the determined positions to a first mobile machine on the worksite. A corresponding computing system and computer-readable medium for executing the method are also described.
Abstract:
A laser radar (LADAR) system is provided with amplitude-weighted spatial coherent processing. An amplitude-weighted sum of time domain signals arising from several detectors within a detector array is formed and used for range doppler processing. Weighting coefficients are chosen to be proportional to the signal amplitude present for each of the separate signals from each detector within the array. The amplitude coefficients are determined using target returned energy arising from a continuous wave (CW) porch portion of the transmitted waveform. Amplitude-weighted spatial coherent processing improves the carrier-to-noise
Abstract:
A method of developing a flight path for precision flying over an area of interest, the method including, in an electronic processing device, determining coordinate and elevation data relating to an area of interest, using the coordinate and elevation data to determine a flight path including precision paths corresponding to precision flying trajectories and non-precision paths interconnecting at least some of the precision paths, and generating path data at least partially indicative of the flight path, the path data being useable in generating control signals for at least partially controlling operation of the aircraft, in use.
Abstract:
A method and an apparatus for generating positional sensor data of a coordinate measuring device are provided. A sensor generates sensor data points and a trigger signal with a trigger frequency. A sensor data record is generated which includes the sensor data points and a sensor data time. The trigger signal is transmitted to a device for determining a sensor position, a position data record is determined upon or after the reception of the trigger signal, the position data record includes at least one position data point and one position data time, an assignment of position data points to sensor data points is determined depending on the sensor data time and the position data time, and a positional sensor data record is generated which includes at least one sensor data point and a position data point assigned to this sensor data point.
Abstract:
A device (10), specifically tailored to measure the development of soil and, preferably, of seabed surface (14) profile is characterized by a waterproof/airtight casing housing: an hydraulic pressurized circuit (15), extending along a longitudinal direction, filled with a specific liquid; a pneumatic circuit (16), extending along the same longitudinal direction, and connected to the above hydraulic circuit (15) at one or more points; this pneumatic circuit (16) is filled with air kept at a constant pressure, or with inert gas allowing pressurization of the above said hydraulic circuit (15); a number of differential pressure transducers (18, 20, 22), placed at the above said one or more connections between the hydraulic circuit (15) and the pneumatic circuit (16); an electronic control circuit including: means for data acquisition, (said data come from the above said pressure transducers (18, 20, 22) and are related to pressure measurements at each of said one or more points); means for calculation of pressure difference in respect to a reference point, the so called benchmark (13); means for storage of recorded data; and means for data transmission to a remote control unit (28), so that it is possible to compute the difference of altitude profile at one or more said points in respect to said benchmark (13); such an altitude profile difference, being for the communicating vessels principle directly proportional to the corresponding detected pressure difference, allows determination of the altitude profile of device (10) all along its longitudinal length.
Abstract:
A computer-implemented method for generating an image-textured digital surface model (DSM) for a geographical area of interest including both buildings and terrain may include using a computer to generate a digital elevation model (DEM) of both the buildings and terrain for the geographical area of interest. The method may further include providing a collection of optical images including oblique optical images for the geographical area of interest including both buildings and terrain. The computer may also be used to selectively superimpose oblique optical images from the collection of optical images onto the DEM of both the buildings and terrain for the geographical area of interest and to thereby generate the image-textured DSM for the geographical area of interest including both buildings and terrain.
Abstract:
A method of synchronized survey with computer aid with which a working drawing of engineering is transformed into a drawing file in the computer. The drawing file on the screen accompanying with the window page can appear locations and coordinates of a reference point, a rear view point or all control points specifically. The computer and the theodolite connect with a modem respectively to transmit data related to survey to each other by way of communication network. Place the theodolite at the reference point in the job site and the locating prism at the rear view point or each control point. The screen of display in the computer may appear the location of locating prism in the working drawing on the instant such that the operator of locating prism may be informed to move toward a correct operating point. The present invention offers an innovated way of survey work with figure, synchronization, monitoring and display, and remote control such that the surveyed data can be checked and corrected at any time and a great deal of works can be simplified to lower down tremendous required time, manpower, and cost.