Abstract:
A method for providing actuation thrust to a projectile. The method including: providing two or more individual actuators movably disposed in a stack housing, each of the two or more individual actuators being separated by a separation layer; accelerating exhaust from the two or more individual actuators with an accelerating nozzle having at least a convergent section terminating at a throat; and maintaining a constant volume in the accelerating nozzle after actuation of each of the two or more individual actuators.
Abstract:
The present invention relates to a missile or aircraft with a hierarchical, modular, closed-loop flow control system and more particularly to aircraft or missile with a flow control system for enhanced aerodynamic control, maneuverability and stabilization. The present invention further relates to a method of operating the flow control system.Various embodiments of the flow control system of the present invention involve different elements including flow sensors, active flow control device or activatable flow effectors and logic devices with closed loop control architecture. The sensors of these various embodiments are used to estimate or determine flow conditions on the various surfaces of a missile or aircraft. The active flow control device or activatable flow effectors of these various embodiments create on-demand flow disturbances, preferably micro-disturbances, at different points along the various aerodynamic surfaces of the missile or aircraft to achieve a desired stabilization or maneuverability effect. The logic devices are embedded with a hierarchical control structure allowing for rapid, real-time control at the flow surface.
Abstract:
A fluid vectoring nozzle comprises flow vectoring means suitable for selectively producing a fluid dynamic throat in the nozzle in a plane oblique to the axis of the nozzle, such that in operation fluid flow passing through the throat is rotated about an axis parallel to and coincident with the plane of the throat. That is to say, the present invention comprises flow vectoring means suitable for selectively producing a fluid dynamic throat in the nozzle in a plane oblique to the axis of the nozzle, such that, in operation, fluid passing through the fluid dynamic throat is turned towards an angle perpendicular to the plane of the throat. Fluid injection means are provided to inject a control fluid into the nozzle through a perforate region provided in at least one nozzle wall, thereby generating a fluid dynamic restriction which initiates the formation of the fluid dynamic throat.
Abstract:
The present invention relates to a method of controlling an aircraft, missile, munition or ground vehicle with plasma actuators, and more particularly to controlling fluid flow across their surfaces or other surfaces, which would benefit from such a method. The method includes the design of an aerodynamic plasma actuator for the purpose of controlling airflow separation over a control surface of a aircraft, missile, or a ground vehicle, and more particularly to the method of determining a modulation frequency for the plasma actuator for the purpose of fluid flow control over these vehicles. The various embodiments provide the steps to increase the efficiency of aircraft, missiles, munitions and ground vehicles. The method of flow control provides a means for reducing aircraft, missile's, munition's and ground vehicle's power requirements. These methods also provide alternate means for aerodynamic control using low-power hingeless plasma actuator devices.
Abstract:
The present invention relates to a reconfigurable porous technology for fluid flow control system and more particularly to reconfigurable porosity fluid flow control system for vehicles such as aircraft, missiles, ground and water vehicles to improve the performance of such vehicles. The present invention further relates to a method of operating the reconfigurable fluid flow control system.In one embodiment, the present invention includes a reconfigurable porosity system for fluid flow control on the surface of an aircraft, missile, water-craft or ground vehicle comprising a porous outer skin comprising individual pores; individually addressable valves corresponding and connected to the individual pores for opening and closing the pores; and a pneumatic system for connecting the pores wherein fluid from a high pressure area of the porous outer skin can be directed to a low pressure area of the porous outer skin by opening and closing the individually addressable valves. In another embodiment, the present invention includes a method of fluid flow control using reconfigurable porosity.
Abstract:
A ring portion including: a ring body; and one or more actuators formed therein for providing thrust to a projectile and configured for fastening to a shell of an airborne device to form a portion of the shell. The airborne device can be a projectile.
Abstract:
A method of controlling an aircraft, missile, munition or ground vehicle with plasma actuators, and more particularly of controlling fluid flow across their surfaces or other surfaces which would benefit from such a method, includes the design of an aerodynamic plasma actuator for the purpose of controlling airflow separation over a control surface of a aircraft, missile, or a ground vehicle, and a method of determining a modulation frequency for the plasma actuator for the purpose of fluid flow control over these vehicles. Various embodiments provide steps to increase the efficiency of aircraft, missiles, munitions and ground vehicles. The method of flow control reduces the power requirements of the aircraft, missile, munition or ground vehicle. These methods also provide alternative aerodynamic control using low-power hingeless plasma actuator devices.
Abstract:
A projectile guidance system without gyros in which the projectile has an orthogonal body coordinate system. The projectile has a triax of accelerometers providing x, y and z acceleration data measured along the x, y and z axes respectively. A GPS antenna and receiver means provides onboard GPS position and velocity data in earth referenced navigational coordinates. A computer and program means stores and accesses time indexed GPS position and GPS velocity data and transforms x, y and z axis acceleration data from body to navigation coordinates. The program means is responsive to corresponding time indexed acceleration data and to GPS velocity and position data for calculating and outputting an estimated projectile roll, pitch and yaw angle via optimal smoothing techniques with respect to local level for each time index iteration of present position to a flight control system, which actuates a divert propulsion system for guiding the projectile to a predetermined location.
Abstract:
1. A rocket engine comprising, in combination, a manifold for introducing propellants into a combustion chamber, a wall having a hemispherical deflecting surface fixed to an intermediate portion of said manifold and extending aft therearound, a conical combustion chamber fixed to and communicating with the aft end of said manifold and having its larger open end positioned adjacent but spaced from said surface to define an expansion exhaust nozzle and throat therewith, apertures formed in the apex of said chamber for bleeding combustion gases therethrough, and means for deflecting a portion of said gases to vary the thrust vector of said engine in operation.