Abstract:
The present invention relates to a missile or munition with a hierarchical, modular, closed-loop flow control system, more particularly to aircraft or munition with flow control system for enhanced aerodynamic control, maneuverability and stabilization. The present invention further relates to a method of operating the flow control system.Various embodiments of the flow control system involve elements including flow sensors, active flow control devices or activatable flow effectors, and logic devices with closed loop control architecture. The sensors are used to estimate or determine flow conditions on the surfaces of a missile or munition. The active flow control device or activatable flow effectors create on-demand flow disturbances, preferably micro-disturbances, at different points along the various aerodynamic surfaces of the missile or aircraft to achieve a desired stabilization or maneuverability effect. The logic devices are embedded with a hierarchical control structure allowing for rapid, real-time control at the flow surface.
Abstract:
The present invention relates to a missile or aircraft with a hierarchical, modular, closed-loop flow control system and more particularly to aircraft or missile with a flow control system for enhanced aerodynamic control, maneuverability and stabilization. The present invention further relates to flow control system involving different elements including flow sensors, active flow control device or activatable flow effectors and logic devices with closed loop control architecture. The active flow control device or activatable flow effectors of these various embodiments are adapted to be activated, controlled, and deactivated based on signals from the sensors to achieve a desired stabilization or maneuverability effect. The logic devices are embedded with a hierarchical control structure allowing for rapid, real-time control at the flow surface.
Abstract:
The present invention relates to a missile or aircraft with a hierarchical, modular, closed-loop flow control system and more particularly to aircraft or missile with a flow control system for enhanced aerodynamic control, maneuverability and stabilization. The present invention further relates to a method of operating the flow control system.Various embodiments of the flow control system of the present invention involve different elements including flow sensors, active flow control device or activatable flow effectors and logic devices with closed loop control architecture. The sensors of these various embodiments are used to estimate or determine flow conditions on the various surfaces of a missile or aircraft. The active flow control device or activatable flow effectors of these various embodiments create on-demand flow disturbances, preferably micro-disturbances, at different points along the various aerodynamic surfaces of the missile or aircraft to achieve a desired stabilization or maneuverability effect. The logic devices are embedded with a hierarchical control structure allowing for rapid, real-time control at the flow surface.
Abstract:
The present invention relates to a missile or aircraft with a hierarchical, modular, closed-loop flow control system and more particularly to aircraft or missile with a flow control system for enhanced aerodynamic control, maneuverability and stabilization and methods of operating the flow control system. Various embodiments of the flow control system of the present invention involve flow sensors, active flow control device or activatable flow effectors and/or logic devices with closed loop control architecture. The sensors are used to estimate or determine flow conditions on surfaces of a missile or aircraft. The active flow control device or activatable flow effectors of these various embodiments create on-demand flow disturbances, preferably micro-disturbances, at different points along various aerodynamic surfaces of the missile or aircraft to achieve a desired stabilization or maneuverability effect. The logic devices are embedded with a hierarchical control structure allowing for rapid, real-time control at the flow surface.
Abstract:
The present invention relates to a missile or aircraft with a hierarchical, modular, closed-loop flow control system and more particularly to aircraft or missile with a flow control system for enhanced aerodynamic control, maneuverability and stabilization. The present invention further relates to a method of operating the flow control system.Various embodiments of the flow control system of the present invention involve different elements including flow sensors, active flow control device or activatable flow effectors and logic devices with closed loop control architecture. The sensors of these various embodiments are used to estimate or determine flow conditions on the various surfaces of a missile or aircraft. The active flow control device or activatable flow effectors of these various embodiments create on-demand flow disturbances, preferably micro-disturbances, at different points along the various aerodynamic surfaces of the missile or aircraft to achieve a desired stabilization or maneuverability effect. The logic devices are embedded with a hierarchical control structure allowing for rapid, real-time control at the flow surface.
Abstract:
The present invention relates to a missile or aircraft with a hierarchical, modular, closed-loop flow control system and more particularly to aircraft or missile with a flow control system for enhanced aerodynamic control, maneuverability and stabilization, and to a method of operating the flow control system.Various embodiments of the present invention involve different elements including flow sensors, active flow control device or activatable flow effectors and logic devices with closed loop control architecture. The sensors are used to estimate or determine flow conditions on the various surfaces of a missile or aircraft. The active flow control device or activatable flow effectors create on-demand flow disturbances, preferably micro-disturbances, at different points along the various aerodynamic surfaces of the missile or aircraft to achieve a desired stabilization or maneuverability effect. The logic devices are embedded with a hierarchical control structure allowing for rapid, real-time control at the flow surface.”
Abstract:
The present invention relates to a missile or aircraft with a hierarchical, modular, closed-loop flow control system and more particularly to aircraft or missile with a flow control system for enhanced aerodynamic control, maneuverability and stabilization. The present invention further relates to a method of operating the flow control system.Various embodiments of the flow control system of the present invention involve different elements including flow sensors, active flow control device or activatable flow effectors and logic devices with closed loop control architecture. The sensors of these various embodiments are used to estimate or determine flow conditions on the various surfaces of a missile or aircraft. The active flow control device or activatable flow effectors of these various embodiments create on-demand flow disturbances, preferably micro-disturbances, at different points along the various aerodynamic surfaces of the missile or aircraft to achieve a desired stabilization or maneuverability effect. The logic devices are embedded with a hierarchical control structure allowing for rapid, real-time control at the flow surface.
Abstract:
A multi-mode mobility micro air vehicle (MAV) accomplishes ground locomotion by hopping on a retractable leg. The hopping is translated into forward locomotion when aided by the forward thrust of propellers, and the orientation of locomotion is directed by aerodynamic controls like ailerons, rudders, stabilators, or plasma actuators. The foot of the leg is convexly curved so as to produce hopping that is statically and passively dynamically stable. The MAV is also equipped for vertical takeoff so that it may conduct multiple idling missions in sequence and may return home for recovery and reuse. Structural integration of power storage and photovoltaic generation systems into the aerodynamic surface of the MAV lightens the weight of the MAV while also providing a strong structure and permitting the MAV to harvest its own energy. The MAV may autonomously conduct surveillance missions and/or serve as a flying platform for self-healing sensor or communications networks, especially when multiple MAVs are used in concert.