Abstract:
A heat exchanger is disclosed having a tube bundle, intended to internally receive a first fluid, and a shell with an inlet opening at a first end. The shell allows an internal circulation of a second fluid and is arranged to surround the tube bundle. An inner casing to the shell circumscribes the bundle within a heat exchange chamber so that between the casing and the shell an annular region extending in a continuous way along the length of the bundle is defined. The annular region is in fluid communication with the exchange chamber through an outflow opening obtained at a second end of the inner casing where the latter has a rear wall facing an opening of the shell to outlet the second fluid from the heat exchanger. The inlet and outlet openings are in fluid communication by means of the annular region.
Abstract:
An assembly is provided for a gas turbine engine. This engine assembly includes a vane array and a heat exchanger integrated with the vane array. The vane array includes an inner platform, an outer platform and a plurality of vanes. The inner platform extends circumferentially about a centerline and forms an inner peripheral boundary of a flowpath through the vane array. The outer platform extends circumferentially about the centerline and forms an outer peripheral boundary of the flowpath through the vane array. The vanes extend across the flowpath between the inner platform and the outer platform. The vanes include a first vane and a second vane. The heat exchanger includes a first vane passage and a second vane passage fluidly coupled with and downstream of the first vane passage. The first vane passage extends through the first vane. The second vane passage extends through the second vane.
Abstract:
A waste heat boiler has heat exchange tubes for indirect heat exchange of a relatively hot process gas and a cooling media, and a by-pass tube for by-passing a part of the process gas; a swirl mixer ensures mixing of the cooled process gas and the relative hot process gas exiting the heat exchange tubes and the by-pass tube.
Abstract:
A heat exchanger for an oxygenator comprises multiple tube sections, each having a longitudinal tube axis, wherein the tube sections are disposed as a bundle having a longitudinal bundle axis, and the tube sections are connected to each other in at least one connecting section of the bundle by joining by way of chemical and/or physical bonded joints. A method for producing the heat exchanger is also provided.
Abstract:
Methods and a system for shielding cooling tubes in a radiant syngas cooler. The heat shields may prevent direct contact between heated syngas and the cooling tubes. The heat shield may be mounted to a header that also attaches to the cooling tubes. The heat shield may also be separated from the cooling tubes or, alternatively, the heat shield may be coated onto the cooling tubes. Furthermore, prolonged exposure to the heated syngas may corrode the heat shield.
Abstract:
A heat exchange device (1), e.g., for a syngas reactor, comprising a channel wall (3) defining a flow channel and one or more heat exchange surfaces (5a-d), each embedding one or more flow paths for a fluid heat exchange medium. A support structure (20) supports the heat exchange surfaces (5a-d) within the flow channel. The support structure (20) comprises a plurality of arms (21) extending from a central crossing (22) to the channel wall (3). The arms (21) of the support structure can embed evenly distributed, e.g., meandering inner channels (23) which can be in open connection with the flow paths in the heat exchange surfaces (5a-d).
Abstract:
A tube isothermal chemical reactor (1), comprising a vessel (2) with a central axis (A-A), and an annular tube heat exchanger (40) embedded in a catalytic reaction space, the exchanger (40) comprising a plurality of concentric ranks (10, 11) of tube packs (10a), each of said tube packs comprising parallel tubes (30), a respective heat-exchange fluid feeder (20) and a respective heat-exchange fluid collector (21).
Abstract:
A syngas cooler for use in a gasification system is described that includes a head portion including a plurality of conduit headers. The syngas cooler also includes an annular shell portion including a plurality of conduits, the plurality of conduits configured to be coupled in flow communication with the plurality of conduit headers. The syngas cooler also includes a quench portion configured to remove particulates entrained in a flow of syngas flowing through the syngas cooler. The head portion and the shell portion are configured to be coupled together with a circumferential seam weld.
Abstract:
An exhaust gas recirculation system for an engine positioned in an engine compartment of a vehicle is provided. The system comprises an exhaust gas recirculation cooler positioned in an exhaust gas path of the engine; and an exhaust gas recirculation valve positioned upstream of the cooler in the exhaust gas path and spatially adjacent a side of the cooler that is exposed to decreased ambient temperature in the engine compartment during engine powered vehicle travel.