Abstract:
The present invention relates to a device for controlling the thickness of a coating made of a liquid film on a moving strip (3), characterized in that automated structure for reducing the gas flow at each of said nozzle sides comprise a moving carriage (10) guiding a retractable cable (9) able to be applied respectively onto and out of the gas discharge opening (4), inside the nozzle chamber (5) and in that, at each transversal side of the nozzle (1), a transition, between an external nozzle section where the gas flow is reduced and an internal nozzle section where the gas flow is not reduced, is assured by two together-moving grooved wheels or pulleys (6, 7) connected to the moving carriage (10), located side by side and having their axis perpendicular to the nozzle, so that the cable (9) is successively located against the opening (4) on an external side of the first pulley (6), between the two pulleys (6, 7) and distant from the opening (4) on an internal side of the second pulley (7).
Abstract:
Method for preparing a membrane from fibril cellulose includes supplying fibril cellulose dispersion on a filter layer, draining liquid from a fibril cellulose dispersion by the effect of reduced pressure through the filter layer that is impermeable to fibrils of the fibril cellulose but permeable to the liquid to form a membrane sheet on the filter fabric, applying heat on the opposite side of the membrane sheet to the membrane sheet while continuing draining of the liquid through the filter layer by pressure difference over the filter layer, and removing the membrane sheet from the filter layer as a freestanding membrane.
Abstract:
A method for drying a strip (3) or sheet metal that runs through a rolling mill is characterized in that the strip (3) or the sheet metal is cooled to a lower temperature in a cooling section by means of a coolant, in particular a cooling liquid, down-stream of a hot strip mill (1) or, in case of sheet metal, after passing through at least one roll stand (2), and in that the coolant, in particular the cooling liquid, and subsequently the moisture remaining on the strip (3) or the sheet metal is removed from the strip (3) or sheet metal by means of a drying apparatus (10).
Abstract:
A method an apparatus for manufacturing a fiber web, in particular a web of tissue or hygiene material, provided with a three-dimensional surface structure, whereby the fiber web is pressed at a dry content of
Abstract:
The present invention is related to a method and apparatus for liquid treating and drying a substrate, such as a semiconductor wafer, the method comprising the step of immersing a substrate or a batch of substrates in a tank filled with a liquid, and removing the substrate(s) through an opening so that a flow of the liquid takes place through the opening during removal of the substrate. Simultaneously with the removal, a reduction of the surface tension of the liquid is caused to take place near the intersection line between the liquid and the substrate. For acquiring such a tensio-active effect, a uniform flow of a gas or vapor is used, or/and a local application of heat. The invention is equally related to an apparatus for performing the method of the invention.
Abstract:
A method and apparatus for manufacturing a fiber web, in particular a web of tissue or hygiene material, provided with a three-dimensional surface structure, whereby the fiber web is pressed at a dry content of
Abstract:
A process for pre-drying textile filaments after wet treatment and a device for practicing this process. The process consists essentially in applying simultaneously to a layer of wet filaments (3) passing by on a conveyor (4) with a permeable conveying surface, on the one hand, a mechanical squeeze-drying action and, on the other hand, a pressure difference by circulation of air through said layer (3).
Abstract:
A high speed negative pressure air stream from a sucking-out nozzle or a combination of a high speed negative pressure air stream from the sucking-out nozzle and a high speed air jet stream from a blowing nozzle are used for drying an article. Flanges can be installed at a tip end of the sucking-out nozzle and the blowing nozzle. The air jet stream can be injected obliquely to the surface of the article to be dried. Water adhered to an article to be dried, for example, a wet mat, is rapidly divided into minute water drops which are extracted. Vermin, lice and other contaminants are also removed. The article to be dried is rapidly dehydrated and dried in a low temperature. The sucking-out nozzle provided with a flange in a sucking-out pipe is placed so that it can slide on the surface of the article to be dried. A water drop separating vessel is installed between the sucking-out pipe and the inlet of a blower. A dehumidifier is installed between the outlet of the blower and the blowing pipe. Thus, air is circulated and continuous drying is performed efficiently, without vaporization heat, within a short amount of time and requiring little energy consumption.
Abstract:
A device for adjusting implements, such as blowing heads, rotary brushes and the like, to the glass sheet thickness in the continuous production of mirrors, where said sheets travel on a conveyor; the implements are mounted on a frame comprising rollers, cylinders and the like, which is suspended from articulated parallelograms and is at least partly counterweighted.
Abstract:
A fabric drying method is disclosed in which compressed air or vapor is blown at high or supersonic speed from a slit toward a fabric sheet passing over the curved surface of a back-up roll or bar. By the impact pressure of said high speed air, moisture in the fabric sheet is blown out with a part of said high speed air passing through the fabric sheet and, when necessary, the remaining moisture is suctioned through ports in said back-up roll or bar. Apparatus for dehydrating fabrics, including a compressed air chamber with a slit discharge and a fabric support and back-up roll having a point of tangency with the fabric offset downstream from the slit with respect to the direction of fabric movement is also disclosed. The apparatus has means for exposing the fabric to negative air pressure at a point offset upstream from the slit with respect to the direction of movement of the fabric.