Abstract:
An air separation device for distilling air at a low temperature, includes a high-pressure column to separate high-pressure raw material air into high-pressure nitrogen gas and high-pressure oxygen-enriched liquefied air; a low-pressure column to separate the high-pressure oxygen-enriched liquefied air into low-pressure nitrogen gas, low-pressure liquefied oxygen, and argon-enriched liquefied oxygen; an argon column to separate the argon-enriched liquefied oxygen having a pressure higher than the pressure into argon gas and medium-pressure liquefied oxygen; first and second indirect heat-exchangers; first and second gas-liquid separation chambers; a first/second passage which communicates the gas/liquid phase of the low-pressure column and the gas phase of the second gas-liquid separation chamber; and a first/second opening/closing mechanism located on the first/second passage.
Abstract:
An air separation unit and associated method for separating air by cryogenic distillation using a distillation column system including a higher pressure column, a lower pressure column, an intermediate pressure kettle column, and an argon column arrangement is provided. The disclosed air separation unit and method is particularly suited for production of an argon product as well as several nitrogen products wherein a portion of the nitrogen overhead intermediate pressure kettle column is taken as an intermediate or elevated pressure nitrogen product. The present air separation unit and associated method employs a once-through kettle column reboiler, a once-through kettle column condenser while the argon condenser condenses an argon-rich vapor stream against a pumped oxygen stream from the bottom of the lower pressure column.
Abstract:
A method and apparatus for producing high-purity nitrogen and low-purity oxygen using three-column rectification are provided, in which: nitrogen and oxygen undergo rectification in different columns, with high-purity nitrogen and low-purity oxygen being separated out of air simultaneously, thereby overcoming the shortcomings of conventional low-purity oxygen production equipment, and also reducing equipment investment, lowering energy consumption, increasing product added value, and realizing a circular economy effect.
Abstract:
A method and apparatus for producing compressed nitrogen and liquid nitrogen. A separation system has a high-pressure column, a low-pressure column with a top condenser and a main condenser. Air is compressed in an air compressor, purified, cooled in a heat exchanger and introduced into the high-pressure column. A first part of the gaseous top nitrogen from the low-pressure column becomes compressed nitrogen product. A second part of the gaseous top nitrogen is condensed in the condensing space of the top condenser and vapour is drawn off as a residual gas stream. The vapor is expanded in a first expansion machine. A second compressed nitrogen stream from the top of the high-pressure column is expanded in a second expansion machine and then drawn off as compressed nitrogen product. A part of the nitrogen condensed in the top condenser is drawn off as liquid nitrogen product.
Abstract:
A process comprises a first set of distillation columns and a second set of distillation columns, a low-pressure column of the first set being connected to a column operating at higher pressure of the second set by means of a gas arriving from the top of the column operating at a higher pressure and/or by means of a fluid arriving from the low-pressure column.
Abstract:
A system and method serve generate oxygen by low-temperature air separation in a distillation column system having a high-pressure column and a low-pressure column, a main condenser which is constructed as a condenser-evaporator, and an auxiliary column. A gaseous oxygen-containing fraction is introduced into the auxiliary column. A nitrogen-containing liquid stream from the high-pressure column, the main condenser or the low-pressure column is applied as reflux to the top of the auxiliary column. An argon-rich stream from an intermediate site of the low-pressure column is introduced into an argon removal column that has an argon removal column top condenser. The low-pressure column is arranged beside the high-pressure column, the main condenser is arranged over the high-pressure column, the auxiliary column is arranged over the main condenser, the argon removal column is arranged over the auxiliary column and the argon removal column top condenser is arranged over the argon removal column.
Abstract:
The present invention is a process for recovering rare gases from a multiple column oxygen plant, wherein the multiple column oxygen plant comprises a higher pressure column, a lower pressure column, a middle pressure intermediate column, and a low pressure intermediate column, said middle pressure intermediate column comprising a first bottom reboiler and said low pressure intermediate column comprising a second bottom reboiler. The process includes providing a first oxygen rich liquid stream containing rare gases from the higher pressure column, wherein said first oxygen rich liquid stream is introduced to the first bottom reboiler. The process also includes removing a second oxygen rich liquid stream rich in rare gases from the bottom of the middle pressure intermediate column, wherein said second oxygen rich liquid stream is introduced to the low pressure intermediate column. The process also includes removing a first liquid purge stream concentrated in rare gases is removed from the low pressure intermediate column, wherein said first liquid purge stream is further concentrated downstream. And the process includes removing a third oxygen rich liquid stream lean in rare gases at a location that is at least one tray above the first bottom reboiler, wherein said third oxygen rich liquid stream is introduced to the lower pressure column.
Abstract:
The invention relates to a method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air in a distillation column system for nitrogen-oxygen separation, said distillation column system having at least one high-pressure column (8) and one low-pressure column (460), wherein the low-pressure column (460) is in a heat-exchanging connection with the high-pressure column (8) by means of a main condenser (461) designed as a condenser-evaporator. Feed air is compressed in an air compressor (2). The compressed feed air (6, 734, 802, 840) is cooled down in a main heat exchanger (20) and at least partially introduced into the high-pressure column (8). An oxygen-enriched liquid (462, 465) is removed from the high-pressure column (8) and fed to the low-pressure column (460) at a first intermediate position (464, 467, 906). A nitrogen-enriched liquid (468, 470) is removed from the high-pressure column (8) and/or the main condenser (461) and fed to the head of the low-pressure column (460). A liquid oxygen flow (11, 12) is removed from the distillation column system for nitrogen-oxygen separation, brought to an elevated pressure in the liquid state (13), introduced into the main heat exchanger (20) at said elevated pressure, evaporated or pseudo-evaporated and heated to approximately ambient temperature in the main heat exchanger (20), and finally obtained as a gaseous compressed oxygen product (14). A high-pressure process flow (34, 734) is brought into indirect heat exchange with the oxygen flow in the main heat exchanger (20) and then depressurized (36, 38; 736, 738), wherein the depressurized high-pressure flow (37, 737) is introduced at least partially in the liquid state into the distillation column system for nitrogen-oxygen separation. A gaseous circuit nitrogen flow (18, 19) is drawn from the high-pressure column and at least partially (21) compressed in a circuit compressor (22). A first sub-flow (45, 46; 244, 242, 230; 845, 846) of the circuit nitrogen flow is removed from the circuit compressor (22, 322), cooled down in the main heat exchanger (20), at least partially condensed in the bottom evaporator (9, 209) of the high-pressure column (8) in indirect heat exchange with the bottom liquid of the high-pressure column (8), and conducted back into the distillation column system for nitrogen-oxygen separation. A second sub-flow of the circuit nitrogen flow is branched off upstream and/or downstream of the circuit compressor and/or from an intermediate stage of the circuit compressor at a product pressure (P, P1, P2, P3, P4) and obtained as a compressed nitrogen product (27, 29, 53, 564, 565). The circuit compressor (22, 322) is designed as a hot compressor and is driven by means of external energy.
Abstract:
Refrigeration duty in a carbon dioxide purification unit (CPU) operating at elevated pressure and sub-ambient temperature can be provided in at least a first part by indirect heat exchange against at least latent heat of at least one liquid first refrigerant, preferably carbon dioxide liquid(s) produced in the CPU, thereby typically evaporating the liquid(s), and a second part by indirect heat exchange with sensible heat energy alone of a second refrigerant. The second refrigerant may be nitrogen gas imported from an integrated cryogenic air separation unit (ASU) or carbon dioxide liquid exported from the CPU, cooled and returned to the CPU. One advantage is that total power consumption of the CPU and an integrated ASU is reduced.
Abstract:
Oxygen-containing gas comprising no more than about 50 mol % oxygen is fed (150) to an auxiliary separation column (40) in a multiple column cryogenic air distillation system comprising at least a higher pressure (“HP”) column (10) and a lower pressure (“LP”) column (30) for separation into nitrogen-rich overhead vapor and oxygen-rich liquid. Oxygen-rich liquid is fed (154) from the auxiliary column (40) to an intermediate location in the LP column (30). The auxiliary column (40) is refluxed with a liquid stream from or derived from the HP column (10). One advantage of the invention is that the diameter of the upper sections (II, III) of the LP column (30) need no longer be larger than the diameter of the rest of the column system thereby increasing the capacity of the column system (under the constraint of a defined maximum column section diameter).