Abstract:
A dehumidifier has a handle that is recessed inward from a top surface of a main body to open both side surfaces thereof and is disposed to stably move the main body of the dehumidifier without deteriorating an outer appearance of the dehumidifier.
Abstract:
A compact air conditioner is provided, the air conditioner having a housing with an internal cavity and an outer surface, an evaporator assembly arranged within a front portion of the internal cavity of the housing, a condenser assembly arranged within a back portion of the internal cavity of the housing, and a compressor associated with the evaporator and condenser assemblies. The evaporator assembly includes an evaporator fan, a front motor that drives the evaporator fan, and an evaporator arranged adjacent to the evaporator fan. The condenser assembly includes a condenser fan, a back motor that drives the condenser fan, and a condenser arranged adjacent to the condenser fan. The compressor includes a coolant adapted to circulate between the evaporator and the condenser.
Abstract:
A compact air conditioner is provided, the air conditioner having a housing with an internal cavity and an outer surface, an evaporator assembly arranged within a front portion of the internal cavity of the housing, a condenser assembly arranged within a back portion of the internal cavity of the housing, and a compressor associated with the evaporator and condenser assemblies. The evaporator assembly includes an evaporator fan, a front motor that drives the evaporator fan, and an evaporator arranged adjacent to the evaporator fan. The condenser assembly includes a condenser fan, a back motor that drives the condenser fan, and a condenser arranged adjacent to the condenser fan. The compressor includes a coolant adapted to circulate between the evaporator and the condenser.
Abstract:
An air cleaning device for separating airborne particles from a flow of air is provided. The air cleaning device comprises a separating unit and an ionizing unit arranged to charge airborne particles present in the flow of air and transmit at least a major part of the charged particles towards the separating unit. The ionizing unit comprises at least one collector electrode and at least one emitter electrode. The separating unit is arranged to attract at least some of the charged particles so as to separate them from the flow of air. Further, the at least one collector electrode is shaped so as to conduct at least a portion of the flow of air and has a spherically curved inner surface and the emitter electrode is centered with respect to the spherically curved inner surface of the collector electrode.
Abstract:
A compact air conditioner is provided, the air conditioner having a housing with an internal cavity and an outer surface, an evaporator assembly arranged within a front portion of the internal cavity of the housing, a condenser assembly arranged within a back portion of the internal cavity of the housing, and a compressor associated with the evaporator and condenser assemblies. The evaporator assembly includes an evaporator fan, a front motor that drives the evaporator fan, and an evaporator arranged adjacent to the evaporator fan. The condenser assembly includes a condenser fan, a back motor that drives the condenser fan, and a condenser arranged adjacent to the condenser fan. The compressor includes a coolant adapted to circulate between the evaporator and the condenser.
Abstract:
Dehumidifiers with improved airflow and fluid management features are disclosed herein. A dehumidifier configured in accordance with a particular embodiment includes a housing, a moisture removal component, and an airflow director. The housing at least partially defines an airflow path extending therethrough. The moisture removal component is positioned within the housing along a portion of the airflow path, and the airflow path enters the moisture removal component in a first direction. The airflow director adjacent to the moisture removal component extends in a plane that is generally parallel to the first direction.
Abstract:
A modular air conditioning (AC) system including one or more AC modules is provided. The AC modules may be adapted to function individually or cooperatively as part of a modular system. The AC modules may be further adapted to connect in a variety of advantageous ways to facilitate the supply of conditioned air to a variety of downstream applications.
Abstract:
The present invention relates to a window kit (200) and a window sealer (400) of an air conditioner (100). The window kit (200) is provided in the exhaust guide means (140) of the movable air conditioner (100) is firmly fixed to the window frame (D) without having a separate connection member. The gap between the windows generated in the installation process of the window kit (200) is effectively shielded by the window sealer (400).
Abstract:
A wall-penetrating sleeve of air conditioner comprises external pipe and internal pipe. The cross section of the external pipe is “sports ground” shape, and an inner circular wall of the external pipe is tangential to an outer circular wall of the internal pipe. An end of the internal pipe is connected to an air outlet port of the air conditioner, and an end of the external pipe is connected to an air inlet port. This invention prevents an air outlet pipe of a mobile air conditioner from sliding off the wall body.
Abstract:
A portable air conditioning and water-cooling unit includes a mass of refrigerant and a compressor for compressing the refrigerant. The unit also includes a single condenser for condensing the refrigerant and a pipe connecting the compressor and condenser. First and second capillary tubes and first and second connectors connect the first capillary tube to the condenser and a second connector connects the second capillary tube to the condenser. In addition, the unit includes an air conditioning evaporator and a pipe for connecting the air conditioning evaporator to the first capillary tube for cooling air. A water supply is also provided as well as a water-cooling evaporator and pipe connecting the water-cooling evaporator to the second capillary tube. A first thermostat senses the temperature of the water and sends a signal to a solenoid valve for stopping the flow of refrigerant to the second capillary tube when the water reaches a pre-selected temperature.The entire cooling load is directed to the A/C evaporator when the surrounding area reaches a pre-selected temperature. A second thermostat sends a signal to the compressor to shut it off.