Abstract:
Disclosed is a heating device, including a first and second ends of an indoor water supply pipe communicated with a main water supply pipe and a water supply end of a radiator; a valve, a first temperature sensor, a heating and control module and a third temperature sensor arranged between the first and second ends; two ends of the heating and control module connected with a bypass pipe; a first and second ends of an indoor return water pipe communicated with a main return water pipe and a return water end of the radiator; a three-way valve and a second temperature sensor arranged between the first end and the second end of the indoor return water pipe; and a first and second ends of the water pump communicated with a third end of the three-way valve and the indoor water supply pipe.
Abstract:
An electronic converter unit (30, 86, 87) for being arranged external to a pump unit (10) is described. The pump unit (10) includes a housing (12), which comprises a signal source (16, 18) for emitting a signal. The electronic converter unit (30, 86, 87) comprises a signal detector (40) for measuring the signal emitted from the signal source (18) of the pump unit (10). The electronic converter unit (30) further comprises a converter unit (41) for converting said signals to electrical signals, and transmitting means (42) for transmitting the electrical signals to an external communication unit (50). The electronic converter unit (30, 86, 87) is further configured to operate in a signal converter mode (30) and a signal repeater mode (86, 87).
Abstract:
A heating installation or cooling installation mixing device has a valve housing (14) including a first flow path from a first connection (A-B) to a second connection (A), and a second flow path from the first connection (A-B) to a third connection (B). A movable valve element (24), arranged inside the valve housing (14) in the flow paths, is configured to vary a ratio of cross sections of the flow paths. A valve element drive (36) is arranged on the valve housing (14) and includes an internal control device (38) for movement control of the drive (36) and includes a first communication interface (44) for external control device (40) communication and a second communication interface (46). An internal sensor (48, 50) is arranged in or on the valve housing (14) and is connected to the first communication interface (44) for transmitting a sensor signal to the external control device (40).
Abstract:
A conditional climate control system is presented for maximizing the comfort level of the climate within a building while minimizing the usage of an on-demand energy source. An energy reserve created by an intermittent energy source or sources is monitored, and when it has surpassed a predetermined threshold level the climate conditions of a building are set to more desirable but energy intensive levels from energy-saving levels.
Abstract:
A heating system includes: a heat generation unit which generates heat using electricity supplied through a second power system of a lower electricity rate; a heat storage unit which stores heat generated by the heat generation unit; a heat radiation unit which radiates heat stored in the heat storage unit; and a control unit which causes, when receiving a signal from a power supplier indicating that a supply of electricity through the second power system is to be stopped after an elapse of a predetermined period of time, the heat generation unit generates additional heat that is required while the supply of electricity through the second power system being suspended, during a period of time from when the signal is received to when the supply of electricity through the second power system is stopped.
Abstract:
A temperature responsive valve having a primary inlet, secondary inlet and an outlet, in which the two inlets communicate with one another through a chamber within the valve body and communicate with the outlet through an orifice controlled by a valve member. A temperature responsive device is mounted within the primary inlet and is connected to the valve member so as to move that member into an orifice closing position when the temperature of fluid entering the primary inlet exceeds a predetermined temperature. A deflector located within the valve body functions to influence the flow of fluid entering the valve through the secondary inlet so that it is directed away from the outlet and towards the primary inlet. The invention is also concerned with a solar heating system incorporating such a valve in which a storage tank outlet is connected to the primary inlet, a cold water supply is connected to the secondary inlet and the inlet side of the solar heating panel is connected to the valve outlet.
Abstract:
A hot-water heat pump that is capable of reducing installation costs and installation space and also reducing the heating time of a hot-water route, and a method of controlling the same are provided. The hot-water heat pump (1) is provided with a hot-water-heat-pump main unit (2) that includes a thermal output heat exchanger that absorbs heat from a heat-source route and outputs heat; hot-water route (5 and 6) that receive heat outputted from the thermal output heat exchanger; a three-way valve (4) provided in the outlet-side hot-water route (6); and a controller that controls the hot-water-heat-pump main unit (2) and the three-way valve (4), wherein the controller controls the size of openings of the three-way valve (4) so that a portion of the outlet-side hot-water route (6) leading out of the thermal output heat exchanger is guided to an upstream side of the thermal output heat exchanger.
Abstract:
An air-conditioning system, for a pre-installed heating system equipped with a circulating network of a primary heat exchange fluid between a central unit and a plurality of peripheral units of heat exchange with the environment air, wherein the central unit includes a heat source/well for heat adjusting the primary heat exchange fluid in a range between a hot temperature and a cold temperature lying above the current dew temperature, the peripheral units including active fan coil units, having at least one refrigerating-fluid section, with a closed circuit including a first batch of fluid/air heat exchangers, and a heating section with a second batch of fluid/air heat exchangers, and wherein a supply portion and a return portion of the circulating network are connected to the second batch of heat exchangers and to a third fluid/fluid heat exchanger connected to the closed circuit of the refrigerating fluid section.
Abstract:
A water heating system includes a first water heater having a first heating source of a first type, and a second water heater having a second heating source of a second type. The system further includes a valve having a first interface connected to the cold water source, a second interface connected to the first cold water inlet of the first water heater, a third interface connected to a second hot water outlet of the second water heater, and a fourth interface connected to the first hot water outlet of the first water heater. A motor positions the valve to one of at least three positions Finally, the system also includes a control circuit including a temperature sensor near the first hot water outlet of the first water heater, and a controller configured to control the motor based on a sensed temperature by the temperature sensor.