Abstract:
A method for reducing pollutant emissions uses a two-stage primary combustion process for a solid-containing fuel including a primary furnace having a combustion chamber, a solid fuel burnout zone and a primary flue-gas post combustion chamber, and a separate secondary combustion train. The fuel is burned in the primary combustion chamber while supplying primary gas in a substoichiometric amount so as to form high heating-value gas and low-carbon solid residue. A partial stream of this gas is diverted and the remainder is passed to the post-combustion chamber. The diverted stream is passed to the secondary combustion train, which includes a conditioner, a secondary combustion chamber and an energy recovery device. Energy-spent exhaust gas from the train is recirculated to the furnace upstream of the post-combustion chamber in which it is burned with the remainder of the high heating value gas and an oxygen-containing gas supplied in superstoichiometric amounts.
Abstract:
A method for improving effectiveness of a steam generator system includes providing a steam generator system including a steam generator vessel, an air supply system and an air preheater. The air supply system is in communication with the steam generator vessel through the air preheater and the steam generator vessel is in communication with the air preheater. The air supply system provides a first amount of air to the air preheater. At least a portion of the first amount of air is provided to the steam generator vessel. A flue gas mixture is discharged from the steam generator vessel. At least a portion of the flue gas mixture flows into the air preheater. SO3 in the flue gas mixture is mitigated before the flue gas mixture enters the air preheater.
Abstract:
A method for improving effectiveness of a steam generator system includes providing air to an air preheater in excess of that required for combustion of fuel and providing the air at a mass flow such that the air preheater has a cold end metal temperature that is no less than a water dew point temperature in the air preheater and such that the cold end metal temperature is less than a sulfuric acid dew point temperature. The method includes mitigating SO3 in the flue gas which is discharged directly from the air preheater to a particulate removal system and then directly into a flue gas desulfurization system. Flue gas reheat air is fed from the air preheater to heat the flue gas prior to entering a discharge stack to raise the temperature of the flue gas to mitigate visible plume exiting and to mitigate corrosion in the discharge stack.
Abstract:
A method for reducing pollutant emissions uses a two-stage primary combustion process for a solid-containing fuel including a primary furnace having a combustion chamber, a solid fuel burnout zone and a primary flue-gas post combustion chamber, and a separate secondary combustion train. The fuel is burned in the primary combustion chamber while supplying primary gas in a substoichiometric amount so as to form high heating-value gas and low-carbon solid residue. A partial stream of this gas is diverted and the remainder is passed to the post-combustion chamber. The diverted stream is passed to the secondary combustion train, which includes a conditioner, a secondary combustion chamber and an energy recovery device. Energy-spent exhaust gas from the train is recirculated to the furnace upstream of the post-combustion chamber in which it is burned with the remainder of the high heating value gas and an oxygen-containing gas supplied in superstoichiometric amounts.
Abstract:
A method and apparatus are provided for treating exhaust from a solid fuel combustion system such as a furnace or boiler and includes combusting a material in the combustion chamber and separating fly ash and char from a flue gas stream. The separated fly ash and char mixture is then separated further by separating smaller ash particles from larger char particles. The larger char particles are then reduced in size by a reducing device such as a grinder or crusher. Char particles that have been reduced in size by the grinder or crusher are then reinjected into the combustion chamber for re-burning.
Abstract:
A reduced emission kiln is described. In some embodiments, the kiln includes a combustion zone for generating heat energy. The combustion zone includes an oxygen inlet and a fuel inlet. In some embodiments, the kiln also includes a calcination zone for converting limestone into lime and carbon dioxide in response to the heat energy from the combustion zone. The calcination zone includes an inlet for limestone, a conduit for directing the carbon dioxide to the combustion zone for use as a flood gas to control the heat energy, an outlet for directing the lime to a hydration chamber, and a carbon dioxide permeable membrane for separating the carbon dioxide in the calcination zone from other materials in the calcination zone and preventing the other materials from entering the conduit for directing the carbon dioxide.
Abstract:
A plurality of optical monitoring systems 220,320 sense the concentration of at least one constituent in flue gasses of a furnace 1 and its emission control devices. The monitoring devices 220,320 includes at least one optical source 221 for providing beams 223 through a sampling zone 18 to create a combined signal indicating the amount of various constituents within the sampling zone 18. The combined signal may be fed forward to emission control devices to prepare them for oncoming emissions. The combined signals may also feed backward to adjust the emission control devices. They may also be provided to a control unit 230 to control stoicheometry of the burners of furnace 1. This results in a more efficient system that reduces the amount of emissions released.
Abstract:
An apparatus for evaporating waste water and reducing gas emissions includes an evaporator device configured to receiving a portion of flue gas emitted from a boiler unit and waste water to directly contact the flue gas with the waste water to cool and humidify the flue gas and to dry solid particulates within the waste water. In some embodiments, the waste water may be a component of a mixture formed by a mixer device prior to being contacted with the flue gas to humidify and cool the flue gas and dry solids within the waste water. An alkaline reagent as well as activated carbon can be mixed with the waste water prior to the waste water contacting the flue gas. Solid particulates that are dried within the cooled and humidified flue gas can be separated from the flue gas via a particulate collector.
Abstract:
An apparatus for evaporating waste water and reducing gas emissions includes an evaporator device (7, 31) configured to receiving a portion of flue gas emitted from a boiler unit (1) and waste water to directly contact the flue gas with the waste water to cool and humidify the flue gas and to dry solid particulates within the waste water. In some embodiments, the waste water may be a component of a mixture formed by a mixer device (25) prior to being contacted with the flue gas to humidify and cool the flue gas and dry solids within the waste water. An alkaline reagent as well as activated carbon can be mixed with the waste water prior to the waste water contacting the flue gas. Solid particulates that are dried within the cooled and humidified flue gas can be separated from the flue gas via a particulate collector (9).
Abstract:
A reduced emission kiln is described. In some embodiments, the kiln includes a combustion zone for generating heat energy. The combustion zone includes an oxygen inlet and a fuel inlet. In some embodiments, the kiln also includes a calcination zone for converting limestone into lime and carbon dioxide in response to the heat energy from the combustion zone. The calcination zone includes an inlet for limestone, a conduit for directing the carbon dioxide to the combustion zone for use as a flood gas to control the heat energy, an outlet for directing the lime to a hydration chamber, and a carbon dioxide permeable membrane for separating the carbon dioxide in the calcination zone from other materials in the calcination zone and preventing the other materials from entering the conduit for directing the carbon dioxide.