Abstract:
A rotary seal comprising: a shaft with a chromium oxide coating provided at a seal contact area; wherein said coating has a hardness of at least 55 Rockwell-C. The coating may have a surface roughness parameter (Ra) of between 0.2 and 0.4 circular. The coating may have a thickness of at least 0.1 mm. The coating layer forms part of a rotary seal with a flexible seal element that is biased into contact with the surface of the coating. The flexible seal element may be biased against the shaft by a spring to increase the pressure of the flexible seal element against the coating. The coating is preferably deposited by a plasma spray process.
Abstract:
A sealing assembly includes a seal support having a support ring made from an elastomeric material, at least one seal element having a ring made from a polymer material, and an abutment ring against which a radial portion of the seal element axially abuts. The seal element is connected in a materially-bonded manner to the support ring along a first radially outer portion of the seal element, and the seal element axially abuts on the abutment ring along a second radially inner portion of the seal element. The seal element and the abutment ring are free of any connection along the second radially inner portion of the seal element.
Abstract:
The sealing device includes: an outer peripheral ring 2000 that is in contact with a side wall surface of an annular groove 4100 at a low pressure side (L), and slides with respect to an inner peripheral surface of a shaft hole in a housing 5000 through which a shaft 4000 is inserted. An inner peripheral ring 3000 made of a rubber-like elastic body that is in contact with an inner peripheral surface of the outer peripheral ring 2000 and a groove bottom surface of the annular groove 4100, respectively. The outer peripheral ring 2000 is formed on its outer peripheral surface with a concave portion 2220 which extends from an end of a high pressure side (H) to a position which does not arrive at an end of a low pressure side, so as to introduce fluid thereinto from the high pressure side.
Abstract:
Provided is a shaft seal device provided with a seal member which possesses excellent liquid tightness, small friction resistance and high wear resistance. In a shaft seal device which is arranged around the periphery of a shaft which is supported in a rotatable manner or in a reciprocating manner, and is provided with a seal member for securing liquid tightness around the shaft, the seal member is formed of a porous body formed by using a hydrophilic polymer resin in which chains are cross-linked. The shaft seal device is also characterized in that: the shaft is a shaft which extends between a liquid phase region and a gas phase region; the seal member is a seal member which suppresses a leakage of a liquid to the gas phase region from the liquid phase region; and an aqueous lubricant which is prepared by adding a water soluble thickening agent is impregnated into the seal member.
Abstract:
An adjustable seal apparatus for mounting a mixing apparatus having a movable shaft in sealed engagement with a wall of a vessel and in a selected orientation with respect to the wall of the vessel. The adjustable seal apparatus includes a seal mechanism for creating a gas-tight seal between the shaft of the mixing apparatus and the wall of the vessel and an adjustable mounting mechanism for selectively positioning the shaft in a desired orientation.
Abstract:
The seal arrangement (1) for piston compressors comprises a deformable ring support (2) and a first and a second endless sealing ring (3a, 3b), wherein the ring support (2) has a longitudinal axis (L) which extends perpendicularly with respect to its circumferential direction, and wherein the ring support (2) has a gap (2i) with play in its circumferential direction, and wherein each sealing ring (3a, 3b) has a longitudinal axis (3c, 3d) which extends perpendicularly with respect to its circumferential direction, and wherein the sealing rings (3a, 3b) are arranged in such a way that the ring support (2) encloses them from the outside, and wherein the two sealing rings (3a, 3b) are arranged next to one another in the direction of extent of the longitudinal axis (L), and wherein the ring support (2) and the sealing rings (3a, 3b) are designed to be adapted to one another in such a way that the first sealing ring (3a) bears on one side against a first side wall (2d) of the ring support (2) and forms a first gap (S1) to the ring support (2) on the opposite side with regard to the longitudinal axis (3c) of the first sealing ring (3a), and wherein the second sealing ring (3b) bears in a diametrically opposed manner on one side against a second side wall (2l) of the ring support (2) and forms a second gap (S2) to the ring support (2) on the opposite side with regard to the longitudinal axis (3d) of the second sealing ring (3b), wherein the first and second side walls (2d, 2l) are arranged so as to lie opposite one another with regard to the longitudinal axis (L), with the result that the ring support (2) can in each case bring about a prestressing force (5a, 5b) on the first and second sealing rings (3a, 3b) respectively via the first and second side walls (2d, 2l) respectively, wherein the prestressing forces (5a, 5b) extend in an opposed manner.
Abstract:
An adjustable seal apparatus for mounting a mixing apparatus having a movable shaft in sealed engagement with a wall of a vessel and in a selected orientation with respect to the wall of the vessel. The adjustable seal apparatus includes a seal mechanism for creating a gas-tight seal between the shaft of the mixing apparatus and the wall of the vessel and an adjustable mounting mechanism for selectively positioning the shaft in a desired orientation.
Abstract:
A seal cavity throat bushing, for use with rotating fluid equipment having a seal cavity, is defined by a rotary shaft having an axis. The shaft housing surrounds at least a portion of the shaft and a sealing device engages the shaft and the housing at one end of the cavity. The bushing includes an annular element, which is adapted for a tight fit in a housing at the entrance to the cavity opposite the one end. The annular element has a radially outer cylindrical surface for contacting a cavity wall of the housing and a radially cylindrical surface having a diameter greater than that of the shaft to define a gap there-between.
Abstract:
A seal for use in temperature and pressure extremes is disclosed. It features springs internal to the sealing members and the ability to seal against pressure differentials from opposed directions. A spacer ring prevents contact from oppositely oriented seal components and at the same time prevents spring and seal collapse under extreme loading conditions. The seal assembly is self-centering in a downhole seal bore and can be used on tools delivered on wireline, where the insertion forces available are at a minimum. The seal can withstand pressure differentials in excess of 13,500 PSI and temperatures above 350 degrees Fahrenheit.
Abstract:
A self-aligning, self-lubricated waterless-gland assembly disposed about a rotatable shaft between a process side and an atmosphere side, comprising a shaft-sleeve disposed about, contacting, and rotatable with the shaft, an annular case connected to and rotatable with the shaft-sleeve, and a stationary elastomeric boot member disposed about the shaft-sleeve, substantially filling the annular case and arranged to form a sealing interface. The waterless-gland assembly is applicable to devices whereby a fluid is movable between an inlet and an outlet.