摘要:
This disclosure presents a new type of variable stiffness magnetic spring, which can have a highly linear translational force characteristic. The variable stiffness is achieved through the rotation of a central magnet. Both positive and negative spring constants can be created. Using an analytic-based field analysis modelling technique, the operating principle and linearity characteristics of the adjustable magnetic spring are studied. The use of a magnetic spring with an adjustable negative spring constant could enable an ocean generator to continuously operate in a resonant state, thereby greatly increasing its power generation capability. The described variable stiffness spring could also be useful in other energy harvesting applications, robotic actuator applications, and/or other applications.
摘要:
A magnetically-coupled torque assist apparatus includes a movable (rotor) magnet configured to rotate about a rotor magnet axis extending through the rotor magnet, and a stationary (stator) magnet. The rotor magnet and the stator magnet have a gap therebetween. There is an equilibrium state position (ESP) of the rotor magnet where forces acting on the rotor magnet are balanced such that the rotor magnet is stationary about the rotor magnet axis. And when the rotor magnet is rotated from the equilibrium state position (ESP) to an elastically stressed state position (SSP), magnetic fields of the rotor magnet and the stator magnet generate a resultant magnetic force on the movable magnet that biases the movable magnet towards the equilibrium state position. In some embodiments, the stator and rotor magnets are configured to create a Halbach-effect magnetic field bloom, which contributes to the magnetic forces.
摘要:
The present disclosure provides an axial engagement-controlled variable damper comprising a rotor assembly coupled to a rotor shaft and disposed about an axis of rotation and a stator, coaxially aligned with the rotor assembly. The axial engagement-controlled variable damper may further comprise a flux sleeve, axially movable relative to the rotor assembly between at least a first position and a second position. The flux sleeve may comprise a circumferential flange portion disposed radially between the rotor assembly and the stator, and may be configured to alter magnetic coupling between the stator and the rotor assembly in response being moved axially. The axial-engagement controlled variable damper may be configured to generate a first drag torque in response to the flux sleeve being in the first position and a second drag torque in response to the flux sleeve being in the second position.
摘要:
An upper frame swingable between an inclined posture and a substantially horizontal posture along a trajectory of movement of a four-bar linkage is held in the substantially horizontal posture by a simple operation when necessary. A front link mechanism control gives an external force for pushing down an operation member to thereby control a front link mechanism so as to displace the upper frame rearward while lowering a front side of the upper frame. Since a displacement direction for bringing the upper frame into the substantially horizontal posture and an operation direction for locking the front link mechanism or a rear link mechanism by the operation of the operation member are substantially the same direction, it is possible to perform two movements, the displacement movements to the substantially horizontal posture and the locking movements, only by operating the operation member in a predetermined direction.
摘要:
A vibration isolator is provided comprising a base structure, a load structure, a displacement structure and at least one vertical air gap formed by opposing and substantially parallel walls of the base structure and the load structure. The opposing walls being at least partly covered by respective arrays of permanent magnets, neighboring magnets in the arrays having alternating magnetization directions, an arrangement of the permanent magnets in the arrays being such that a gravitational force on the load structure is substantially compensated by a net magnetic force of the base structure on the load structure. The displacement structure relatively displaces arrays of permanent magnets of the opposing walls with respect to each along the air gap for adjusting a load capacity of the vibration isolator.
摘要:
A magnetic spring arrangement for a resonant motor, comprising: a housing (12), magnets (14, 16) fixed in position at opposing ends (13, 15) of the housing, a magnet (18) positioned within the housing for movement toward and away from the fixed magnets in a reciprocal oscillating motion with a driving action produced by a stator coil (24) and an AC drive signal (26), wherein an applicator member (32) is attachable to the moving magnet for corresponding movement of a workpiece portion (34) of the applicator member.
摘要:
The object of the present invention is to provide a vibration damping apparatus having 6 degrees of freedom using a magnetic circuit. Vibration transfer can be isolated by a vibration damping mechanism to set the spring constant utilizing a relative displacement of a movable magnet 37 to a stationary magnet 27 in an axial direction, and an elastic force of a metal spring 50 substantially to be zero. The displacement is quickly restored to an original position by a rubber 24a and the metal spring 50 composing a device to restore the displacement due to vibration not only in an axial direction (Z axis direction) but also in a horizontal direction (X or Y axis direction), in a rotational direction around each axis, or in a twisting direction which is an overlapping direction of these directions and is damped as a vibration in an axial direction. Accordingly, a vibration having 6 degrees of freedom can be controlled with a simple structure.
摘要:
The object of the present invention is to provide a vibration damping apparatus having 6 degrees of freedom using a magnetic circuit. Vibration transfer can be isolated by a vibration damping mechanism to set the spring constant utilizing a relative displacement of a movable magnet 37 to a stationary magnet 27 in an axial direction, and an elastic force of a metal spring 50 substantially to be zero. The displacement is quickly restored to an original position by a rubber 24a and the metal spring 50 composing a device to restore the displacement due to vibration not only in an axial direction (Z axis direction) but also in a horizontal direction (X or Y axis direction), in a rotational direction around each axis, or in a twisting direction which is an overlapping direction of these directions and is damped as a vibration in an axial direction. Accordingly, a vibration having 6 degrees of freedom can be controlled with a simple structure.
摘要:
A magnetic circuit includes a multi-pole magnet mounted on a predetermined surface of a yoke and having magnetic poles formed in a direction perpendicular to the predetermined surface of the yoke. The multi-pole magnet is separated into two pieces, and a single-pole magnet is interposed between the two pieces of the multi-pole magnet. Magnetic poles of the single-pole magnet are formed in a direction different from the direction in which those of the multi-pole magnet are formed.
摘要:
A vibration, damping apparatus using a magnetic circuit which is easier and less expensive to manufacture than conventional apparatus is provided. The apparatus comprises a moving member 30 placed to move relatively away from and close to magnets 20 and 21 and made of a magnetic material which generates attraction force between the moving member 30 and the magnets 20 and 21, metal springs 40 and 41 as elastic members urging the moving member 30 in a direction in which the moving member 30 approaches thc magnets 20 and 21, and rubbers 60 end 61 as cushioning members mounted on predetermined positions to prevent the moving member 30 from coming in contact with the magnets 20 and 21. A negative spring constant is created by using all attracting magnetic circuit formed between the magnets 20 and 21 and the moving member 30, and to this, the elastic force of the metal springs 40 and 41 having a positive spring constant with the same value as the negative spring constant is added, whereby a total spring constant within a predetermined range of displacement can be set to substantially near zero by a very simple configuration.