Abstract:
A vibration damping mechanism (90) for damping vibrations to prevent coupling of vibration modes of the carrier structure (106) with vibration modes of a rotor (100) secured to the carrier structure (106). The mechanism comprises a support (3) suitable for being fastened to the rotor (100) and at least one resonator (1) including a mass (5) carried by the support (3) via mobile mounts (6) for mounting the mass (5) to move on the support (3), the mechanism (90) including at least one damper (8) for damping the resonator (1), with the damper being interposed between the resonator (1) and an engagement member (9) on the support (3).
Abstract:
Construction machine, with working drum mounted at a machine frame, combustion engine for driving the working drum, drive train between the combustion engine and the working drum, and clutch in the drive train, where the clutch is arranged between a drive shaft and output shaft of the drive train, clutch elements on drive side capable of being engaged with clutch elements on output side, where clutch elements on the drive side or on output side are provided with several clutch part elements that are permanently engaged with one another via at least one mechanical coupling, it is provided that a braking device acting between the drive shaft and the output shaft is arranged at the clutch, said braking device being additionally engaged during engagement of the clutch in order to eliminate or reduce any rotary vibrations caused by play of mechanical coupling between clutch part elements.
Abstract:
The resonator includes pendular bodies, each oscillating around an axis on a support coaxial with the rotor mast and rotated by the rotor head around the axis of the rotor at a rotational speed above the rotational speed of the rotor.
Abstract:
Disclosed is a torque converter in a vehicle, in which a torsional damper reduces a natural frequency and absorbs vibration energy in an anti-resonance state for enhancing a vibration isolation function. The torque converter in a vehicle includes a torsional damper including a retaining plate coupled to the piston, a plurality of springs arranged at the retaining plate for imparting elastic force in a circumferential direction, a driven plate coupled to a spline hub which acts as a reaction force on the springs and forwards driving power to a transmission, and an inertial lever arranged between the piston and the driven plate, the inertial lever including a fixed pivot coupling portion coupled to the piston with a fixed pivot and a movable pivot coupling portion coupled to the driven plate with a movable pivot.
Abstract:
Construction machine, with working drum mounted at a machine frame, combustion engine for driving the working drum, drive train between the combustion engine and the working drum, and clutch in the drive train, where the clutch is arranged between a drive shaft and output shaft of the drive train, clutch elements on drive side capable of being engaged with clutch elements on output side, where clutch elements on the drive side or on output side are provided with several clutch part elements that are permanently engaged with one another via at least one mechanical coupling, it is provided that a braking device acting between the drive shaft and the output shaft is arranged at the clutch, said braking device being additionally engaged during engagement of the clutch in order to eliminate or reduce any rotary vibrations caused by play of mechanical coupling between clutch part elements.
Abstract:
The rotor comprises a pendular vibration suppressor with at least two pendulums each having at least one pendular body connected by at least one rigid arm to a support that rotates as one with the rotor hub, and on which the pendulum oscillates via a pivoting connection about an axis of pendular movement spaced away from the center of inertia of the pendulum and from the axis of the rotor, and substantially perpendicular to a radial plane passing through the axis of the rotor and through the center of inertia of the pendulum, which preferably oscillates between two adjacent rotor blades. At least some of the pendulums are tuned to (nb−1)&OHgr; or (nb+1)&OHgr;, so as to attenuate coplanar moments, and other pendulums may be tuned to nb&OHgr;, to filter out forces along the axis of the rotor.
Abstract:
The solenoid valve (10) has a poppet valve (41) which is operated to move between a position to close a port and a position to open the port. A fixed iron core (50) having a supporting leg (52) and a driving leg (51) is installed in a valve housing (11), and a movable iron core (60) which drives the poppet valve (41) is disposed between a valve driving member (42) and the fixed iron core (50). An arcuate sliding contact surface (61) is provided on one end portion of the movable iron core (60), and a sliding-abutting surface (62) which abuts on the sliding contact surface (61) is provided on a leading end portion of the supporting leg (52). When a coil (56) is de-energized, the sliding-contacting surface (61) is pressed onto the sliding-abutting surface (62) by a flat spring (70), with an abutting portion of the valve driving member (42) serving as a fulcrum of a tensile force applied to the movable iron core (60).
Abstract:
A number of variations may include a torsional vibration damper having an input side, having an output side and having an energy store for the rotationally elastic coupling of the input and output sides in a circumferential direction, wherein, on the input or output side, there is arranged a mass part that is rotatable relative to the input or output side counter to the restoring force of a restoring apparatus.
Abstract:
The rotor comprises a pendular vibration suppressor with at least two pendulums each having at least one pendular body connected by at least one rigid arm to a support that rotates as one with the rotor hub, and on which the pendulum oscillates via a pivoting connection about an axis of pendular movement spaced away from the center of inertia of the pendulum and from the axis of the rotor, and substantially perpendicular to a radial plane passing through the axis of the rotor and through the center of inertia of the pendulum, which preferably oscillates between two adjacent rotor blades. At least some of the pendulums are tuned to (nbnull1)null or (nbnull1)null, so as to attenuate coplanar moments, and other pendulums may be tuned to nbnull, to filter out forces along the axis of the rotor.