Abstract:
A tube is used in fiber-reinforced plastic power transmission shaft. The tube comprises: a cylindrical body section; a connection portion that has a larger diameter than the body section; and an inclined portion that has an outer diameter that increases toward the second connection section from the main body part. The inclined section has formed thereon, a weak section that is damaged when a load input in the axial direction exceeds a prescribed value. With this configuration, the cost of the tube can be reduced, and when a prescribed load is input to the tube in the axial direction, the tube is reliably damaged.
Abstract:
A front final drive assembly for a vehicle can include a housing and a first shaft rotatably supported inside the housing. The first shaft can include a breaking portion such that when a reaction torque applied to the first shaft exceeds a predetermined threshold the first shaft fractures at the breaking portion. The breaking portion can be a reduced diameter portion, and the breaking portion can be positioned inside the housing.
Abstract:
A motoring system for a gas turbine engine having: a reduction gear train having an input and an output; an electric motor operably connected to the input; a clutch operably connected to the output, the clutch in operation engages and disengages the reduction gear train; and a mechanical shaft fuse operably connecting the output to the clutch, the mechanical shaft fuse in operation shears when torque on the mechanical shaft fuse is greater than or equal to a selected value. The mechanical shaft fuse includes a plurality of through holes.
Abstract:
The invention relates to a method for producing a green compact composite comprising at least a first partial green compact and a second partial green compact, wherein, within one pressing cycle, a powder is introduced into a filling chamber and then separated into a first partial quantity and into a second partial quantity, and, within the same pressing cycle, the respective partial quantities are pressed to form a first partial green compact and a second partial green compact and the partial green compacts are amalgamated after the pressing, wherein the amalgamation forms a press fit between the first partial green compact and the second partial green compact and produces a predetermined breaking point in the green compact composite. Furthermore, the invention proposes a green compact composite, a sintered component and also a press, each of which can be based on the proposed method.
Abstract:
A mechanical protection device including: a transmission shaft having a main axis of rotation and an element that is frangible under a torsional overload; a movable member secured to the transmission shaft to rotate about the main axis and configured to move radially outwards relative to the main axis from a first position to a second position; a spring urging the movable member towards the first position; and a tangential abutment configured to stop rotation of the movable member about the main axis when the movable member is in the second position. The movable member and the spring are calibrated so that from a predetermined trigger angular speed the movable member moves from the first position to the second position under effect of centrifugal force greater than prestress of the spring.
Abstract:
A shear coupling assembly utilizes a second coupling member, a first coupling member and a locking member which is inserted into a bore in the first coupling member to connect between the second coupling member and the first coupling member. In embodiments where a pretension is applied to the shear neck, the locking member maintains the pretension in the shear neck. The bore of the first coupling member has a profiled section which corresponds to a profiled section on the second coupling member which when mated together permit torque to be transferred for co-rotating the second coupling member with the first coupling member for use in rotary pump operations. Advantageously, the profiled portions and the shear neck are encased in the bore of the shear coupling assembly and are protected from corrosive wellbore fluids.
Abstract:
A torque transmitting cardan shaft including within the shaft an adapted intermediate member or shaft, which has a first end section, that is intended for a rotationally rigid co-action with a first universal joint yoke and a second end section, opposite the first end section, intended for a rotationally rigid co-action with a second universal joint yoke. The intermediate member or shaft and its end section is configured as and comprises two parts or subsections, which are mutually joined via a safety coupling arrangement, by means of which a free coupling of the subsections from one other can be ensured immediately after the torque, between the subsections, exceeds a predetermined value, determined by the construction of the safety coupling arrangement. An end section and its universal joint yoke includes an axially orientated cylindrical groove or recess, which has a center axis that is co-ordinated with or aligned with a rotational axis of the first end section and its co-ordinated universal joint yoke. The circular groove or recess is dimensioned to enable the enclosure of a major cylindrical part of the safety coupling arrangement and its safety unit first part and co-operate with a second part formed as a disc. The end section or extension and its yoke are integrally formed in one single piece.
Abstract:
A torque-limiting coupling may be used to provide a torsion drive between an engine or motor and a driven accessory. If an accessory should experience a catastrophic failure a torsion limit is exceeded and a spline breaks away from the coupling. This guarantees that the internal engine gearing used to drive the accessory is not compromised and interfering with essential moving parts inside the engine. Further, a misalignment compensation limits the side load and wear that occurs when coupling two precision shafts with little clearance on the bearings. With a misalignment coupling, the mount can be slightly out of parallel with no negative effects.
Abstract:
A power transmission device of a compressor includes a rotary shaft, a pulley, a hub, a power shutoff member, a spacer and a cylinder. The power shutoff member shuts off excessive torque transmission between the pulley and the rotary shaft of the compressor. The spacer is disposed on the rotary shaft. The cylinder is disposed between the power shutoff member and the rotary shaft. The cylinder has an external thread portion formed at the outer periphery thereof for engagement with an internal thread portion of the power shutoff member and an internal thread portion formed at the inner periphery thereof for engagement with an external thread portion of the rotary shaft. The cylinder has a contacting surface for contact with a seating surface of the spacer and a seating surface for contact with a contacting surface of the hub at the axial end portion of the hub.
Abstract:
A coupling device has a pulley that receives rotational torque from an engine. The torque is transmitted to a shaft through a hub and a one-way clutch. A torque limiter is screwed on the shaft to fasten the inner ring of the one-way clutch onto the shaft. The torque limiter has a breakable portion. The torque is directly transmitted from the inner ring to the shaft when the torque is normal. If the torque exceeds the tightening torque of the torque limiter, the inner ring begins to slide and rotate, and drives the torque limiter in a tightening direction. As the torque limiter is tightened additionally, the tensile stress on the breakable portion is increased. Then, the breakable portion breaks and is separated in axial direction so that the coupling device disconnects torque transmission.