Abstract:
This invention is a portable pneumatically driven pressure intensifying positive displacement hydraulic power unit that can be transported in a bag or backpack and carried or worn by the user. The device can be powered by any suitable high pressure gas that is preferably contained in a small pressure vessel for portability. The device can be used to supply high pressure hydraulic fluid to tools with a wide range of uses in many fields including construction, industrial, breaching, and emergency service situations. This novel device does not require an electric or fuel powered hydraulic fluid pumping system, which allows it to be very portable and used in almost any environment (e.g., hazardous atmosphere or under water) without being tethered to an electric or fuel powered power source.
Abstract:
An inner-circulating high speed hydraulic system, a hydraulic platform and a hydraulic platform assembly consisting of said systems, wherein the inner-circulating high speed hydraulic system comprises a hydraulic cylinder component and a pressure valve component, the hydraulic cylinder component including a high pressure cylinder, a hydraulic plunger, and a housing, wherein an axial hole and radial holes intersecting with the axial hole are disposed at the top/bottom of the high pressure cylinder and the high pressure cylinder is contained within the housing, wherein the inner-circulating oil chamber may communicate with the axial hole via the radial holes and further communicate with chambers at the top/bottom of the hydraulic plunger, wherein compressed air inlets are disposed on the housing and a lower end of the hydraulic plunger is connected to an actuating element; and a pressure valve component, comprising a pressure servo motor and a pressure plunger driven by the pressure servo motor to move up and down within the axial hole disposed at the top/bottom of the high pressure cylinder. Accurate control on dwell time for pressing at the up and down stop points of the platform, and highly precise adjustment to duration of the dwell time are enabled by the present invention. Thus, a stamping process with high quality is achieved.
Abstract:
A device for riveting and a hydropneumatic device for pressure transmission, including a working piston and a transmitter piston in the form of a double-acting cylinder for transmitting pressure to the working piston, wherein a working stroke of the working piston in a working direction includes a first stroke and a subsequent second stroke, wherein the first stroke is controlled by means of pneumatic pressure acting on the working piston and the second stroke is controlled by means of pneumatic pressure acting on the transmitter piston, and wherein hydraulic fluid is displaced by the transmitter piston and the displaced hydraulic fluid effects the second stroke of the working piston. Regulation means having an actuating device are provided for regulating the pneumatic pressure on both sides of the double-acting cylinder of the transmitter piston such that the second stroke of the working piston is predefined by way of the regulation.
Abstract:
An oil-gas separated pressure cylinder, which combines a hydraulic cylinder, a pneumatic cylinder and a pres-pressure cylinder, and keeps the applied compressed gas and the storage hydraulic fluid apart, maintaining the quality of the hydraulic fluid and saving the hydraulic fluid replacement cost. When the applied compressed gas enters the pre-pressure cylinder to move a pre-pressure cylinder piston in forcing the storage hydraulic fluid out of an oil storage space of the pre-pressure cylinder into an oil storage space in the hydraulic cylinder, a hydraulic cylinder piston of the hydraulic cylinder is then forced by the hydraulic fluid to move a hydraulic cylinder piston rod against the workpiece, and then a pneumatic cylinder piston rod of the pneumatic cylinder is forced into the oil storage space of the hydraulic cylinder to enhance the pressure at the hydraulic cylinder piston rod against the workpiece.
Abstract:
A pneumatic control device includes a base comprising a reservoir, a first check valve for only allowing hydraulic fluid to flow into the reservoir, and a second check valve for only allowing the fluid to flow out of the reservoir; a hollow cylinder comprising a spring biased piston; a body mounted to the cylinder thereunder and releasably secured to the base, the body comprising a stepped-diameter passageway with a poppet mounted therein; and a cover releasably secured onto the poppet. In response to feeding pressurized air into the cylinder, the fluid in the reservoir flows out during a first stroke of the piston, and the fluid is sucked back into the reservoir during an opposite second stroke of the piston. In one embodiment, the fluid is for actuating a machine vise.
Abstract:
A pressure intensifier for generating a relatively large force includes a plurality of pistons driven in advancing and retracting directions. The pressure intensifier includes a body having a cavity used as an internal fluid reservoir. Furthermore, a damping mechanism limits the relative acceleration between pressure intensifier components during operation.
Abstract:
A pressure intensifier for generating a relatively large force includes a plurality of pistons driven in advancing and retracting directions. The pressure intensifier includes a rod selectively drivable into a cavity to amplify the force acting on one of the pistons. A valve limits fluid flow to control the rate of movement of one of the pistons.
Abstract:
An air powered hydraulic lift system including a hydraulic pump operably connected to the ports of a hydraulic lifting cylinder, the hydraulic pump being driven by an air motor, an air pressure pilot operated valve for controlling supply of hydraulic fluid from the hydraulic pump to the ports of the hydraulic cylinder and an air pressure control valve connected to the air motor and to the air pressure pilot operated valve to supply air pressure to the air motor when air is supplied to the air pressure pilot operated valve.
Abstract:
A drive system for use in a press in which a pneumatic cylinder and hydraulic pressure transformer are coupled together and connected by separate valves to respective gas and hydraulic sources. The valves are controlled by position transducers arranged along the path of movement of the output member of the transformer.
Abstract:
A power device having a power reservoir in which a compressible fluid is maintained under pressure, an accumulator piston and a drive piston which are simultaneously movable to retracted or cocked positions by the introduction of a non-compressible power fluid into a cylinder in which the pistons are reciprocably movable, the power fluid acting on exposed areas of the drive piston to move it with the accumulator piston until it reaches its fully cocked position whereupon further movement of the accumulator piston exposes additional areas of the drive piston to the pressure of the power fluid whereby the compressible fluid, acting through the power fluid, imparts drive movement to the drive piston and multiple seal means on said accumulator piston, reservoir means in said accumulator piston to trap any power fluid which has by-passed one of said seals to thereby avoid intermixing of said compressible and non-compressible fluids.