Abstract:
An engine intake air duct 1 has an intake portion 10 that extends along a first center line A, and a main duct portion 20 that extends along a second center line B. The main duct portion 20 has a merging portion 50, a discharge opening 21, and an extending portion 40 that extends from the merging portion 50 towards an opposite end to the discharge opening 20. A reflecting wall 41 is provided at an end face of the extending portion 40. The intake portion 10 merges with the main duct portion 20 in such a way that the first center line A is directed towards a downstream end of the main duct portion 20.
Abstract:
An intercooler pipe that improves noise, vibration, and harshness (NVH) performance is provided. The intercooler pipe includes a plurality of bellowses, wherein an exterior of the bellows is made of a soft material and an inside thereof is made of a hard material to make a storage modulus of the inside of the bellows greater than that of the exterior thereof. In addition, the intercooler pipe improves the durability of an intercooler pipe.
Abstract:
The invention relates to a device (6) for channeling a stream of feed gas for an internal combustion engine, said device (6) being able to be installed at least facing an exchanger (7) for the thermal conditioning of the stream of gas, the device comprises a first canal (15), referred to as central canal, for the circulation of the stream of gas, delimited by a first part (19) of a wall (17) and intended to channel the stream of gas toward a first zone (20) of a face (40) of the exchanger (7), said device comprising at least one second canal (16), referred to as lateral canal, for the circulation of the stream of gas, delimited by a second part (27) of the wall (17) and intended to channel the stream of gas toward a second zone (28) of said face (40) of the exchanger (7). The invention also relates to an intake airbox of an internal combustion engine and to an air inlet box of said airbox equipped with such a device. It further relates to an air intake module of an internal combustion engine comprising such an airbox.
Abstract:
This invention relates to a double-plenum or double-chamber inlet manifold or splitter, made up of a structural unit comprising two distinct coupled plenums with a common wall, an inlet opening for each of the two plenums and several pipes through each of the said plenums, the said superimposed plenums having substantially flattened general structures and forming, with their respectively connected inlet openings and pipes, two independent circulation circuits running from the entrance at the inlet openings to the outlet at the external openings of the pipes, the said external or outlet openings of the pipes being grouped in pairs, with each pair having an opening of each of the two types of pipes; the manifold comprises two one-piece parts assembled together, in a gas-tight manner, at the continuous assembly areas, a first part incorporating at least the two inlet openings and first portions of the walls of the two plenums, contiguous to the said openings and the second part incorporating the pipes and second portions of the walls of the two plenums, contiguous to the said pipes and complementary to the above-mentioned first portions.
Abstract:
An intake manifold assembly for mounting to a cylinder head and configured to deliver combustion air thereto comprises a centrally positioned zip tube having an opening for receipt of combustion air from a throttle body. First and second flow runners extend from the centrally positioned zip tube to terminate at a common intake manifold plenum for delivery of combustion air thereto. A centrally located access opening is defined between the first and second flow runners.
Abstract:
There is provided an air intake duct structure comprising a first outer air intake duct member, a second outer air intake duct member, and an inner air intake duct member. The first outer air intake duct member is fastened with the inner air intake duct member by a first fastening device, and the second outer air intake duct member is fastened with the inner air intake duct member by a second fastening device to construct an integrally assembled structure. The fastened first outer air intake duct member and the inner air intake duct member constitute a first air intake duct, and the fastened second outer air intake duct member and the inner air intake duct member constitute a second air intake duct. The first and second air intake ducts allow air to pass therethrough.
Abstract:
An intake system of a V-engine provided with a surge tank arranged at a position higher than a cylinder head of the V-engine when attached to the V-engine and divided in internal space into a top part and a bottom part and a plurality of intake tubes communicating the surge tank and intake ports of the V-engine, wherein intake tubes communicated with one cylinder bank of the V-engine are connected to the top part of the surge tank and intake tubes communicated with the other cylinder bank are connected to the bottom part of the surge tank and the surge tank is formed so that a front end of the top part is positioned further toward a rear side of the vehicle compared with the front end of the bottom part when the intake system is mounted to a V-engine mounted in the vehicle, whereby the height of the engine hood can be effectively lowered.
Abstract:
An engine air intake device for an outboard motor includes a plurality of main intake pipes corresponding to each cylinder. First and second branch pipes extend from an upstream end of each main part. The first branch pipes are longer than the second branch pipes. The second branch pipes each include a valve and are selectively closed. The first branch pipes open into a first surge tank. The second branch pipes open into a second surge tank that is formed separately from the first surge tank. In operation, the valves of the second branch pipes are open when the engine is operating in high engine speed and are closed at low-to-medium speeds.
Abstract:
An amount-of-air detecting time period Ti is preset based on an intake time period Tr during which intake air is actually drawn into a cylinder chamber. An intake air amount average value Qa during a time period, other than the time period Ti, between intake strokes is calculated. After confirmation that one half or more of an amount-of-air detecting time period Ti(n+1) has elapsed, an integrated value of the intake air amount is multiplied by a correcting coefficient Ka, and divided by the amount-of-air detecting time period Ti(n+1), thereby calculating an intake air amount Qin during the amount-of-air detecting time period Ti(n+1). The average value Qa of the intake air amount is subtracted from the amount Qin during the amount-of-air detecting time period Ti(n+1), thereby calculating an estimated amount Qp of intake air introduced into the cylinder chamber.
Abstract:
An intake air crossover arrangement for an internal combustion engine having two cylinder banks in a V-shaped arrangement in which air compressed by at least one, and preferably two, turbochargers, is delivered via air ducts to respective intake manifolds for each cylinder bank wherein the air ducts twist at least in the crossover region and have a cross-sectional shape such that they sit in flat contact with one another, preferably by use of an integrally formed crossover pipe containing portions of both ducts. The crossover pipe may further include integral connections for exhaust gas recirculation respectively for each duct.