摘要:
A pulsed detonation engine may include a detonation tube for receiving fuel and an oxidizer to be detonated therein, one or more fuel-oxidizer injectors for injecting the fuel and oxidizer into the detonation tube, one or more purge air injectors for injecting purge air into the detonation tube for purging the detonation tube, and an ignition for igniting the fuel and oxidizer in the detonation tube so as to initiate detonation thereof. The detonation tube has an upstream end, a downstream end, and an axially extended portion extending from the upstream end to the downstream end and having a perimeter. The fuel-oxidizer injectors and purge air injectors may be disposed at least along the axially extended portion. The ignition may include a plurality of igniters disposed at or near the perimeter of the axially extended portion, spaced about the perimeter, at or near the upstream end of the detonation tube.
摘要:
The invention relates to a pulse detonation engine operating with an air-fuel mixture. According to the invention, the engine (1) includes at least two predetonation tubes (4, 5) which operate under conditions close to thermal cutoff conditions and the shock waves from which are focused in the combustion chamber (19).
摘要:
A pulsed detonation engine may include a detonation tube for receiving fuel and an oxidizer to be detonated therein, one or more fuel-oxidizer injectors for injecting the fuel and oxidizer into the detonation tube, one or more purge air injectors for injecting purge air into the detonation tube for purging the detonation tube, and an ignition for igniting the fuel and oxidizer in the detonation tube so as to initiate detonation thereof. The detonation tube has an upstream end, a downstream end, and an axially extended portion extending from the upstream end to the downstream end and having a perimeter. The fuel-oxidizer injectors and purge air injectors may be disposed at least along the axially extended portion. The ignition may include a plurality of igniters disposed at or near the perimeter of the axially extended portion, spaced about the perimeter, at or near the upstream end of the detonation tube.
摘要:
Pulse detonation combustors of valveless construction. One valveless pulse detonation combustor, having a tube with a closed end and an open end, is constructed with a flame accelerator within the tube, adjacent the open end. A valveless, apertured flow restrictor is positioned between the flame accelerator and the closed end of the tube. A sparking device is positioned within the tube, between the flow restrictor and the flame accelerator. Valveless fuel and air ports are positioned between the flow restrictor and the closed end of the tube. Substantially right-angle manifold passageways are in communication with each of the ports.
摘要:
A pulse combustion device has a number of combustors with upstream bodies and downstream nozzles. Coupling conduits provide communication between the combustors. For each given combustor this includes a first communication between a first location upstream of the nozzle thereof and a first location along the nozzle of another. There is second communication between a second location upstream of the nozzle and a second communication between a second location upstream of the nozzle of a second other combustor and a second nozzle location along the nozzle of the given combustor.
摘要:
A shock wave reflector includes a number of reflective units positioned along a longitudinal direction and separated by a gap G. Each reflective unit has a length L. The length L and the gap G are governed by a relationship L+G≧λ. The variable λ characterizes a cell size for a detonation mixture. A detonation chamber includes a receiving end, a discharge end, and a wall extending along a longitudinal direction between the receiving and discharge ends. The detonation chamber further includes a number of reflective units formed in the wall and positioned along the longitudinal direction. The reflective units are separated by a gap G, and each reflective unit has a length L.
摘要:
A pulsed detonation engine having improved efficiency has a detonation chamber for receiving a detonable mixture, an igniter for igniting the detonable mixture, and an outlet for discharging detonation products. A diverging-converging nozzle is provided at the outlet of the detonation chamber. The geometry of the diverging-converging nozzle is selected to enable a relatively short nozzle to significantly improve efficiency of the pulsed detonation engine.
摘要:
A shock wave reflector includes a number of reflective units positioned along a longitudinal direction and separated by a gap G. Each reflective unit has a length L. The length L and the gap G are governed by a relationship LnullGnullnull. The variable null characterizes a cell size for a detonation mixture. A detonation chamber includes a receiving end, a discharge end, and a wall extending along a longitudinal direction between the receiving and discharge ends. The detonation chamber further includes a number of reflective units formed in the wall and positioned along the longitudinal direction. The reflective units are separated by a gap G, and each reflective unit has a length L.
摘要:
A high frequency pulsed fuel injector is disclosed. The fuel injector incorporates a resonance tube in outlet fluid communication with a fuel nozzle. During operation the resonance tube provides a pulsating output which is directed into the fuel nozzle. The pulsating output of the resonance tube perturbs the flow of fuel in the fuel nozzle, effectively breaking it up into discrete slugs or chunks for subsequent combustion in a combustion chamber. The combustion process is greatly enhanced by this breakup of the fuel jet, improving combustion efficiency as well as reducing undesirable emissions.
摘要:
An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.