摘要:
A device and assembly for reliably generating supersonic detonation waves in a fuel and air or fuel and oxygen mixture. The device may use a hemispherical detonation chamber into which reactants, comprising a fuel and air or oxygen mixture are injected and ignited by a laser igniter to initiate a detonation wave. The wave is reflected by the hemispherical geometry of the detonation chamber and may exit the device through a fast-acting valve. The detonation chamber may be then purged and the cycle is repeated many times per second. The device may be used for various applications which include but are not limited to a stand-alone intermittent combustion engine, a pre-detonator for an intermittent combustion engine, a projectile launcher, a cleaning device, acoustical energy generation, pressure energy generation, various manufacturing processes and electric power generation. The device may use liquid, gaseous, or solid fuels, depending on the application.
摘要:
A device and assembly for reliably generating supersonic detonation waves in a fuel and air or fuel and oxygen mixture. The device uses a hemispherical detonation chamber into which reactants, consisting of a fuel and air or oxygen mixture are injected and ignited by a laser to initiate a detonation wave. The wave is reflected by the hemispherical geometry of the detonation chamber and exits the device through a fast-acting valve. The detonation chamber is then purged and the cycle is repeated many times per second. The device can be used for various applications which include but are not limited to a stand-alone intermittent combustion engine, a pre-detonator for an intermittent combustion engine, a projectile launcher, a cleaning device, acoustical energy generation, pressure energy generation, various manufacturing processes and electric power generation. The device may use liquid, gaseous, or solid fuels, depending on the application.
摘要:
A jet engine (1) with continuous and discontinuous impulse, which comprises a diffuser (2) with a cylindrical exterior shape, a combustion chamber (3), and several fuel injection means (19) and a nozzle (4), both with same exterior shape as the diffuser, a rotating disk chamber (5) that allows air to pass continuously or discontinuously from the diffuser (2) to the combustion chamber (3), an alternative engine with an alternative shaft (13) connected to a main shaft (9) of the engine (1) by means of a first cam (14), several means of stopping the main shaft (9), and a pressurized air chamber (16) connected to the main shaft (9), wherein the fuel injection means (19) are suitable for activating the injection in synchronization with the passage of air from the diffuser (2) to the combustion chamber (3).
摘要:
An engine, a power generation system, and methods of manufacturing and using the same are disclosed. The engine includes a detonation/combustion chamber configured to detonate a fuel and rotate around a central rotary shaft extending from the chamber, a fuel supply inlet configured to provide the fuel to the chamber, an air supply channel configured to supply air to the chamber, at least two rotating arms extending radially from the chamber and configured to exhaust gases from detonating the fuel in the chamber and provide a rotational thrust and/or force, and a mechanical work unit configured to receive at least part of the rotational thrust and/or force. Each of the rotating arms has an exhaust nozzle at a distal end thereof, the exhaust nozzle being at or having an angle configured to provide the rotational thrust and/or force.
摘要:
An acoustic compression engine that includes an air intake section adapted to intake a volume of air. The volume of air is mixed with fuel within the air intake section. The acoustic compression engine also includes a resonant chamber adapted to intake a volume of air mixed with fuel from the air intake section. Compression of the volume of air mixed with fuel occurs within the resonant chamber and compression of the volume of air and fuel mixture is based on combustion of compressed air and fuel mixture and a resonant cycle of the acoustic compression engine. The acoustic compression engine further includes at least one exhaust nozzle that controls an exit of exhaust of gas that includes the combustion products at a requisite pressure to yield a thrust.
摘要:
A pulse detonation engine (10) is provided with an aerovalve (14) for controlling the pressure of injected propellants (Ox, Fuel) in an open-ended detonation chamber (26). The propellants are injected at such pressure and velocity, and in a direction generally toward a forward thrust wall end (16) of the detonation chamber (26), an aerovalve (14) is formed which effectively inhibits or prevents egress of the propellant from the detonation chamber (26). A shock wave (34) formed by the injected propellant acts, after reflection by the thrust wall end (16) and in combination with the aerovalve (14), to compress and conserve, or increase, the pressure of the injected propellant. Carefully timed ignition (28) effects a detonation pulse under desired conditions of maintained, or increased, pressure. Termination of the propellant injection serves to “open” the aerovalve (14), and exhaust of the combusted propellants occurs to produce thrust. Alternate embodiments of propellant injection mechanisms (12, 112) provide pulse valves (24, 122, 124) each having a fixed slotted disk (40, 140, 240) and a rotating slotted disk (42, 142, 242) to provide the desired high speed valving of discrete pulses of propellant for injection.
摘要:
A steady-state detonation combustor and a steady-state detonation wave generating method, in which a stabilized detonation wave can be generated by generating a hypersonic and unburned premixed gas. An rich premixed gas whose gas fuel is rich is combusted in a rich premixed gas combustion chamber (11) to generate a fist high-temperature and high-pressure burned gas, while at the same time, a lean premixed gas whose oxygen is rich is combusted in a lean premixed gas combustion chamber (12) to generate a second high-temperature and high-pressure burned gas, and subsequently, after each high-temperature and high-pressure burned gas is accelerated to hypersonic speed and at the same time mixed together through an interpenetrating nozzle (40), a premixed gas obtained by the mixture and containing the gas fuel and the oxygen which are unreacted is impinged on a steady-state detonation stabilizer (60), so that a stabilized detonation wave is generated.
摘要:
A pulse detonation power generation apparatus is provided. This apparatus is provided with a detonation chamber connected to fuel and air sources which detonate to produce energy which may be converted to electrical energy. The pulse detonation energy generator may have one or more detonation chambers, each having an inlet end and an outlet end; a fuel manifold for supplying fuel from a fuel source to said generator; an air manifold for supplying air to said generator; a pre-mixer operatively connected to said fuel manifold, air manifold, and the inlet end of said one or more detonation chambers; an impingement ring disposed along an internal wall of said pre-mixer; a disk valve positioned between the pre-mixer and the air manifold; a predetonator for initiating detonation in said detonation chambers; a rotary valve for pulse feeding an oxidizer or fuel to the predetonator; means for injecting liquid water or steam into combustion products produced in said detonation chambers; and means for converting the energy generated by a detonation in said detonation chambers into electrical energy.
摘要:
A Pulse Detonation Synthesis (PDS) process for the manufacture and deposition of ceramic powders and coatings is disclosed. PDS may use multiple detonation pulses that are initiated in a reaction chamber to synthesize ceramic materials from reactants introduced into the chamber. The reactants may be provided in the form of divided solids, gases, liquids, gels, and/or mixtures of the foregoing. The synthesized ceramic materials may take the form of micron and/or nano-scale powders or coatings. Non-coating powders may be collected for later use. The coatings produced by the present invention include, but are not limited to, gradient coatings, uniform coatings, thermal barrier coatings, and other commercially useful coatings.