Abstract:
A method of thermally drawing fibers containing continuous crystalline metal nanowires therein includes forming a preform comprising an inner core and an outer cladding, wherein at least one of the core and cladding has nanoelements dispersed therein. The preform is drawn through a heated zone to form a reduced size fiber. A second preform is then created from a plurality of fibers created from the reduced size fiber. The second preform is then drawn through the heated zone to form an elongated fiber containing continuous crystalline metallic nanowires therein having a maximum cross-sectional dimension of less than 100 nm. Optionally, a third or additional preforms are created from fibers made from the previous thermal drawing operation that are then drawn through the heated zone to form a fiber containing even smaller crystalline metal continuous nanowires therein. In some embodiments, only a single pass through the heated zone may be needed.
Abstract:
A yarn, especially a sewing thread or an embroidery thread, is described, which has the structure of a core yarn with at least one core consisting of multifilament yarns and a spin over of staple fiber yarns. At least one portion of the fibers, which build the staple fiber yarn of the spin over, is bound between the filaments of the at least one multifilament yarn of the core over its total axial fiber length or over a section of its axial fiber length. Furthermore a method to produce this yarn is described.
Abstract:
Yarns are provided which may include a core having a continuous filament, a first covering of said filament, obtained by winding a first yarn in a first winding direction, a second covering superposed over the first covering, made by winding a second yarn in an opposite winding direction, so as to form an open-coiling cover, at least one third covering, obtained by winding at least one sliver having discontinuous fibres in the same winding direction as the second yarn, positioning the fibres at least in the interspaces of said open-coiling cover. Durable and comfortable textiles and garments made from such yarn and methods of making same are also provided.
Abstract:
An elastic core fiber is caught to prevent production of a core yarn having no elastic core fiber. In a method for producing a core yarn by supplying a sliver to a drafting device in a predetermined amount and merging a core fiber with the sliver, the sliver is supplied to the drafting device in an amount greater than the predetermined amount over a predetermined period of time after spinning is started, so as to merge with the core fiber, and thereafter, the sliver is supplied to the drafting device in the predetermined amount. Preferably, the amount of sliver that is supplied to the drafting device is changed in accordance with the rotational speed of predetermined draft rollers in the drafting device.
Abstract:
A substantially torqueless composite dual core-spun yarn (10) has a substantially inelastic central hard core (20) covered with a dual-spun fiber covering (30). The central hard core (20) has an elongation at break less than 50% and a Z or S twist, and the fiber covering (30) comprises fibers twisted on the core (20) with an S or Z twist opposite to that of the core. The opposite twists of the core (20) and of the covering (30) exert opposite and substantially equal torques. This yarn is produced by introducing two slivers (30A,30B) forming the covering (30) and a central core in a spinning triangle (40). The core (20) is fed overtwisted S or Z and the slivers (30A,30B) have an opposite Z or S twist corresponding to about 30% to 70% of the twist of the fed overtwisted core (20) that detwists during spinning. The inelastic core (20) is fed at controlled speed to compensate for the angle of feed and to compensate for detwisting, and is guided into the spinning triangle (40) by a guide groove (52) in a feed roller (50).
Abstract:
A method and device for the production of core yarn (63), whereby a core yarn (12) is brought to a fiber slubbing (8) which has been refined in a drafting system before said slubbing is reinforced by twisting. The core yarn (12) is embedded in covering fibers. The fiber slubbing is compressed in a compacting device (22) after the core yarn (12) has been brought to the slubbing and before twisting occurs.
Abstract:
A composite yarn comprises a staple fiber component that is formed by drafted sliver. A filament yarn component is formed by applying tension to a filament yarn initially having a crimp such that the crimp is temporarily substantially removed. The staple fiber component and the pretensioned filament yarn component are combined by spinning while the tension is applied to the filament yarn.
Abstract:
This corespun yarn includes a high temperature resistant continuous filament fiberglass core and a low temperature resistant staple fiber sheath surroudning the core. The corespun yarn is useful in the formation of fine textured fire resistant flame barrier fabrics for use as mattress and pillow ticking, bedspreads, mattress covers, draperies, upholstery, protective apparel, tenting, awnings, field fire shelters, for use as a substrate or backing for coated upholstery fabrics and as a flame barrier for use beneath upholstery fabric. The core of high temperature resistant continuous filament fiberglass comprises about 20% to 40% of the total weight of the corespun yarn while the sheath of low temperature resistant staple fibers surrounding and covering the core comprises about 80% to 60% of the total weight of the corespun yarn. The total size of the corespun yarn is within the range of about 43/1 to 3.5/1 conventional cotton count. This corespun yarn may be woven and knit in fine, non-plied form and extneds the range of fineness of fabrics below heretofore achievable limits.
Abstract:
The present invention relates to a process for start spinning or piecing at least two yarns of fibers, which process includes forming strands for start-spinning or piecing by introducing a continuous filament into each roving, false twisting the strands, assembling the strands at a given point of convergence, cutting each filament upstream of its introducing point, removing the filament from the strands and twisting the strands without the filament to a twisted yarn. This process serves to overcome the problem of breaking at the start of the spinning. Also by the present invention, the problem of breaking while twisting the assembled intermediate yarns to a twisted yarn is avoided by introducing a false twisting of the assembled intermediate yarns, supplementing to the false twisting of the intermediate yarns, before the last twisting.
Abstract:
Apparatus for making a yarn comprises two juxtaposed, closely spaced apart suction drums which rotate in the same sense and a delivery duct which protrudes into the triangular space between the suction drums and has an exit adjacent to the suction zones and serves to deliver through said exit singled covering fibers to a drawn roving, which has been delivered by a drawing frame disposed to said triangular space at one end thereof. The yarn thus formed in the triangular space between the suction drums is withdrawn by withdrawing means disposed from said triangular space at the other end thereof. In order to improve the wrapping of the roving with the covering fibers, the surfaces of the suction drums are rough and have a microstructure which will prevent a positive coupling to individual covering fibers and has a peak-to-valley depth up to one-half of the yarn diameter.