Abstract:
A process for recovering non-ferrous metals from a solid matrix may include: leaching the solid matrix with an aqueous-based solution, in a presence of oxygen, to obtain an extraction solution including leached metals and solid leaching residue; separating the solid leaching residue from the extraction solution; and subjecting the extraction solution to at least one cementation to recover the leached metals in elemental state. The leaching solution may include chloride ions. The leaching solution may further include ammonium ions. A pH of the leaching solution may be greater than or equal to 6.5 and less than or equal to 8.5. A leaching temperature may be greater than or equal to 100° C. and less than or equal to 160° C. A leaching pressure may be greater than or equal to 150 kPa and less than or equal to 800 kPa.
Abstract:
A hydrometallurgical process for the treatment of polymetallic ores and sulphide concentrates of copper and zinc, and by-products of lead and zinc from smelting plants, treated independently and/or as mixtures thereof, which contain relevant amounts of lead, copper, zinc, iron, gold and silver, such as the matte-speiss mixture of lead foundries, and copper cements from the purification processes of electrolytic zinc plants. Thee process allows the recovery of metallic copper, zinc, copper as copper and zinc basic salts, which may be hydroxides, carbonates, hidroxysulphates or mixtures thereof; the production of stable arsenic residues; and the effective and efficient recovery of Pb, Au and Ag as a concentrate of lead sulphide and/or lead, Au, and Ag sulphate.
Abstract:
The present disclosure relates generally to systems and methods for recycling lead-acid batteries, and more specifically, relates to purifying and recycling the lead content from lead-acid batteries. A system includes a reactor that receives and mixes a lead-bearing material waste, a carboxylate source, and a recycled liquid component to form a leaching mixture yielding a lead salt precipitate. The system also includes a phase separation device coupled to the reactor, wherein the phase separation device isolates the lead salt precipitate from a liquid component of the leaching mixture. The system further includes a closed-loop liquid recycling system coupled to the phase separation device and to the reactor, wherein the closed-loop liquid recycling system receives the liquid component isolated by the phase separation device and recycles a substantial portion of the received liquid component back to the reactor as the recycled liquid component.
Abstract:
In order to selectively extract copper and/or lead from an acidic solution containing high concentrations of manganese, etc., the valuable-metal extracting agent of the present invention is expressed by general formula (1). In the formula, R1 and R2 each represent the same or different alkyl groups, R3 represents a hydrogen atom or an alkyl group, and R4 represents a hydrogen atom or a given group, other than an amino group, that bonds with an α carbon as an amino acid. In general formula (1), the inclusion of a glycine unit, a histidine unit, a lysine unit, an asparagine acid unit, or a normal methylglycine unit is preferred. When using the extracting agent to extract copper/and lead, it is preferable that the pH of the acidic solution be adjusted to 1.0-5.5 inclusive.
Abstract:
The present disclosure relates generally to systems and methods for recycling lead-acid batteries, and more specifically, relates to purifying and recycling the lead content from lead-acid batteries. A system includes a reactor that receives and mixes a lead-bearing material waste, a carboxylate source, and a recycled liquid component to form a leaching mixture yielding a lead salt precipitate. The system also includes a phase separation device coupled to the reactor, wherein the phase separation device isolates the lead salt precipitate from a liquid component of the leaching mixture. The system further includes a closed-loop liquid recycling system coupled to the phase separation device and to the reactor, wherein the closed-loop liquid recycling system receives the liquid component isolated by the phase separation device and recycles a substantial portion of the received liquid component back to the reactor as the recycled liquid component.
Abstract:
The present disclosure relates to methods by which lead from spent lead-acid batteries may be extracted, purified, and used in the construction of new lead-acid batteries. A method includes: (A) forming a mixture including a carboxylate source and a lead-bearing material; (B) generating a first lead salt precipitate in the mixture as the carboxylate source reacts with the lead-bearing material; (C) increasing the pH of the mixture to dissolve the first lead salt precipitate; (D) isolating a liquid component of the mixture from one or more insoluble components of the mixture; (E) decreasing the pH of the liquid component of the mixture to generate a second lead salt precipitate; and (F) isolating the second lead salt precipitate from the liquid component of the mixture. Thereafter, the isolated lead salt precipitate may be converted to leady oxide for use in the manufacture of new lead-acid batteries.
Abstract:
The present disclosure relates to systems and methods by which lead from spent lead-acid batteries may be extracted, purified, and used in the production of new lead-acid batteries. The system includes a first phase separation device configured to: receive the first mixture from the basic lead stream digestion device, isolate a liquid component from one or more insoluble components of the first mixture, and output the liquid component. The system also includes a lead salt precipitation device configured to: receive and mix the liquid component and a carboxylate source to form a second mixture including a lead salt precipitate, and output the second mixture. The system further includes a second phase separation device configured to: receive the second mixture from the lead salt precipitation device, isolate the liquid component from the lead salt precipitate of the second mixture, and output the lead salt precipitate.
Abstract:
The present invention relates a process of preparing a nanopowder by using a natural source starting material wherein the nano powder is a nano metal or nano alloy or nano metal oxide or nano metal carbide or nano compound or nano composite or nanofluid. The nano product produced by the process has novel properties such as enhanced hardness, antibacterial properties, thermal properties, electrical properties, abrasive resistant, wear resistant, superior frictional properties, sliding wear resistance, enhanced tensile strength, compression strengths, enhanced load bearing capacity and corrosion properties. By virtue of this process the products produced are usable in preparation of thermal fluids, anti-fungal/bacterial/fouling coatings, paints, high strength electrical conductors, high corrosion resistant coatings and alloys, inkjet inks, neutralizing gram positive bacteria, neutralizing gram negative bacteria, motor cycle clutch, rocker arm, solder materials, bearing applications, spring materials, automobile parts, steering wheel joints and coatings, connecting rod, memory enhancing devices, hard disks, pen drives, electronic chips, smart materials, shape memory alloys, add-on materials for composite lamina or laminates of any number.
Abstract:
The invention is directed to a method for the purification of Radium, in particular 226Ra, for target preparation for an essentially pure 225Ac production from available radioactive sources, using an extraction chromatography in order to separate chemically similar elements such as Ba, Sr, and Pb from the desired Ra; wherein said extraction chromatography has an extractant system on the basis of a crown ether. The invention is related to a method for recycling of 226Ra, for target preparation for 225Ac production from radium sources irradiated with accelerated protons (p,2n), after separation of the produced 225Ac. In this method a combination of the above extraction chromatography and a cation exchange chromatography is used. The obtained 226Ra is essentially free of the following chemical contaminants consisting of Ag, Al, As, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Sr, V, Zn, and Ba.
Abstract:
A novel method for remediating metals includes treating the metals with a mesoporous nanocomposite such as HMS, MCM-41 or MCM-48. The metal is preferably lead but can be at least one metal selected from Pb, Hg, Cd, Zn, Sn, As, Sb, In, Se, Ga, Te, Bi, Ni, Cu, Mo, Ni, Cu, Sr, Ba or Co. The treating is preferably performed at a pH of about 4 to about 12. In the invention, the treating can also include desorbing the metal from the mesoporous nanocomposite at a pH of about 2 or less.