摘要:
A gas quenching method of the present invention includes a first stage (t1 to t2) at which a workpiece is subjected to a rapid cooling by forcibly circulating a cooling gas, a second stage (t2 to t3) at which the circulation of the cooling gas is stopped and pressure is reduced inside the furnace to conduct heat insulation, and a third stage (as from t3) at which the workpiece is cooled again by the cooling gas. At the second stage, the workpiece is maintained at an intermediate temperature that is higher than martensite transformation start temperature, and, during this, temperature throughout the workpiece is made uniform. Therefore, it is possible to achieve a uniform quenching and suppress distortion caused by difference of the cooling speed.
摘要:
A heating device for an annular component is provided. The heating device is configured to heat the annular component via hot gas flow, and includes a gas flow heater, a draught fan, and an annular cavity for accommodating the annular component. An outer wall of the annular cavity is provided with a gas flow inlet and a gas flow outlet, the gas flow heater heats a gas flow, and the draught fan enables the gas flow to enter into the gas flow inlet, pass through a gas flow passage in the annular cavity, and be discharged via the gas flow outlet.
摘要:
A heat treatment method of an impeller includes a heat treatment preparation process of arranging the impeller within a vacuum furnace, an impeller covering process of covering an outer peripheral surface of the impeller in a circumferential direction by a heat uniformizing jig made of a radiation conversion material which radiates transferred heat as radiant heat, and a heat treatment process including a heating process and a cooling process in which heat treatment is performed by heating or cooling the impeller covered with the heat uniformizing jig from the periphery using a heater.
摘要:
An installation for the dry transformation of a material microstructure of semi-finished products, especially for dry bainitization, includes a quenching chamber and a microstructure transformation chamber situated downstream from it in the processing flow, in each case the inner space of the two chambers having applied to it excess gas pressure, at least during the respective method step, for the transformation of the material microstructure. Device(s) are provided for maintaining a minimum excess gas pressure acting on the semi-finished product, during the moving of the semi-finished product from the quenching chamber into the microstructure transformation chamber.
摘要:
A process for fabricating a steel sheet is provided. The process includes soaking a steel sheet. The steel has a composition including iron, carbon, manganese, silicon, aluminum, sulfur, phosphorus and nitrogen and at least one metallic element X chosen among vanadium, titanium, niobium, molybdenum, and chromium. A quantity Xp of metallic element under the form of carbides, nitrides or carbonitrides is, by weight: 0.030%≦Vp≦0.40%; 0.030%≦Tip≦0.50%; 0.040%≦Nbp≦0.40%; 0.14%≦Mop≦0.44%; or 0.070%≦Crp≦0.6%. The soaking step occurs under a pure nitrogen or argon atmosphere with a dew point lower than −30° C. at a soaking temperature θ between 250 and 900° C. and with a dynamic circulation of a regenerated atmosphere.
摘要:
A charging frame for accommodating a batch of parts to be quenched, e.g., metal workpieces, has a circumferentially closed peripheral wall which surrounds the batch and thereby forms a flow channel which prevents bypass flows. The charging frame is a part of a quenching device.
摘要:
A heat treatment or heat soak furnace for use in both galvannealing and galvanizing processes including a heating apparatus configured to supply heat and remove heat. The heating apparatus may draw hot air from the exhaust of a direct fire strip annealing furnace, gas burners or electric heat exchangers as necessary. The furnace also may include a plurality of cooling mechanisms in order to ensure heat is removed and the temperature within the furnace regulated. In addition, the furnace may include baffles configured to allow portions of the interior of the furnace to be separated into different temperature zones. The furnace under this invention is capable of providing a suitable thermal environment for a desired time, duration, for steel sheet substrates with different chemistries, different coating thicknesses and different process speeds to achieve an optimum phase microstructure of the galvannealed, zinc-iron alloy coating; or to promptly solidify the galvanizing unalloyed zinc coating so that it has a high quality surface morphology.
摘要:
A process for stainless-steel pipe production which comprises piercing rolling a raw material stainless steel containing, by mass, Cr: 10-30%, to give a hollow shell, elongating rolling the hollow shell using a mandrel bar, together with a graphite-free lubricant, to give a finishing rolling blank pipe and heating the blank pipe in a reheating furnace and subjecting the same to finishing rolling by sizing rolling to produce a hot-finished pipe, and then subjecting this pipe as a mother pipe to cold working to produce a stainless-steel pipe. In the reheating furnace, the finishing rolling blank pipe is heated to 1000° C. or more and subjected to heating in which an oxidizing gas is blown into the pipe inside, whereby a stainless-steel pipe which is inhibited from forming a carburized layer in the pipe inner surface can be produced. When the finishing rolling by sizing rolling to give a cold working mother pipe is carried out by stretch reducer rolling at 860-1050° C., an annealing heat treatment of the mother pipe for cold working can be omitted. Thus, a stainless-steel pipe having excellent surface quality can be efficiently produced.