Abstract:
A hydrocracking system involves introducing a heavy oil feedstock and a colloidal or molecular catalyst, or a precursor composition capable of forming the colloidal or molecular catalyst, into a hydrocracking reactor. The colloidal or molecular catalyst is formed in situ within the heavy oil feedstock by intimately mixing a catalyst precursor composition into a heavy oil feedstock and raising the temperature of the feedstock to above the decomposition temperature of the precursor composition to form the colloidal or molecular catalyst. The colloidal or molecular catalyst catalyzes upgrading reactions between the heavy oil feedstock and hydrogen and eliminates or reduces formation of coke precursors and sediment. At least a portion of a resid fraction containing residual colloidal or molecular catalyst is recycled back into the hydrocracking reactor to further upgrade the recycled resid fraction portion and provide recycled colloidal or molecular catalyst within the hydrocracking reactor.
Abstract:
A process and apparatus to extract and recover heavy metals and sulfur from crude oil or petroleum fuel products including the steps of emulsifying the crude oil with an emulsifying agent, adding a leach solution to the emulsified crude oil and leaching the emulsified crude oil at elevated temperature and pressure to give a leached emulsified crude oil. The leach solution may be acid or alkali. A proportion of the leach solution is extracted for recovering heavy metals. There can also be a microwave hydro-treating step using hydrogen gas at a temperature below 220° C. to ensure there is no quality degradation in the crude feed to produce a desulfurized crude oil and a hydrogen sulphide by-product and recovering sulfur from the hydrogen sulphide by-product.
Abstract:
Medicinal white oils and medicinal paraffins are prepared from petroleum fractions containing aromatics and nitrogen, oxygen and sulfur compounds, e.g. light and heavy atmospheric gas oils, vacuum gas oils and residues, which have been pretreated in a first stage by acid treatment or catalytic hydrogenation, by hydrogenation in a second stage over a nickel-containing catalyst under from 50 to 200 bar and at elevated temperatures, by a process in which the catalyst used in the second stage and present in the oxide form is reduced with a hydrogen-containing gas, passivated and then again activated with hydrogen, before the hydrogenation to medicinal white oils or paraffins is carried out.
Abstract:
A process for producing a lubricant base oil with low pour point and high aromaticity from a feedstock oil which is either a distillate fraction boiling at 250.degree. C. or above that is obtained from a paraffin base or mixed base crude or a deasphalted oil obtained from a vacuum distillation residual oil of said crude, and process comprising:(a) the step of bringing said feedstock oil into contact with a hydrofining catalyst in the presence of hydrogen and recovering a hydrofined oil;(b) the step of dewaxing said hydrofined oil and recovering the dewaxed oil;(c) the step of subjecting said dewaxed oil to extraction with a solvent having selective affinity for aromatic hydrocarbons so as to separate the feed into the raffinate portion and the extract portion, and removing the solvent from said extract portion to obtain an extract oil; and(d) the step of treating said extract oil by means of contact with a solid adsorbent or sulfuric acid.
Abstract:
A combination process for upgrading hydrocarbon fractions obtained from raw shale oil, oil products of coal processing and select fractions of crude oils comprising sulfur, nitrogen and metal contaminants to produce jet fuel product fractions such as JP4, JP5, JP8 and other turbine-type fuel materials provided. The combination of integrated processing steps involving hydrotreating, acid extraction of basic nitrogen compounds and hydrofining thereof to produce a feed composition suitable for catalytic reforming in the absence of significant hydrocracking whereby jet fuel boiling range material is produced significantly reduces by the combination the hydrogen requirements of the process. A further significant contribution to the combination operation resides in the utilization of a catalytic cracking operation of restricted severity to particularly convert high-boiling portions of the hydrocarbon feed fractions to product boiling in the jet fuel boiling range desired before acid extraction of basic nitrogen compounds and further refining thereof as above provided by hydrotreating, reforming and hydrofining of the select product of the reforming operation. Thus, the combination operation of the invention substantially maximizes the yield of desired jet fuel products under hydrogenating conditions particularly conserving the consumption of hydrogen.
Abstract:
A method of denitrogenating an oil containing a relatively high concentration of nitrogenous compounds characterized by, first, extracting the nitrogenous compounds from the oil with an operable acid solvent to produce a raffinate of low nitrogen content oil and a bottoms of high nitrogen content oil; then recovering the acid solvent from the bottoms, simultaneously producing a small volumeteric flow rate stream of oil containing high content of nitrogenous compounds; depending upon the volumeteric rate of the high nitrogen content oil stream and upon demand, sending it to a hydrogen producing plant for supplying hydrogen for hydrogenation; and recycling the acid solvent. Preferred acid solvents comprise phosphoric acid, formic acid or the monoammonium salt of phosphoric acid. The recovery of the solvent may be by neutralization or by distillation. Also disclosed are complete process steps including an initial hydrogenation step before the extraction; the washing of the oil streams before they are sent to their destinations; and hydrodenitrogenation of the low nitrogen raffinate oil.
Abstract:
A process for removing sulfur and nitrogen contaminants from a hydrocarbon stream using a Brønsted acid or an ionic liquid and a Brønsted acid is described. The process includes contacting the hydrocarbon stream comprising the contaminant with a Brønsted acid or a hydrocarbon-immiscible ionic liquid and the Brønsted acid to produce a mixture comprising the hydrocarbon and the Brønsted acid comprising at least a portion of the removed contaminant or a hydrocarbon-immiscible ionic liquid comprising at least a portion of the removed contaminant; and separating the mixture to produce a hydrocarbon effluent having a reduced level of the contaminant and a Brønsted acid effluent comprising the Brønsted acid comprising at least the portion of the removed contaminant or a hydrocarbon-immiscible ionic liquid effluent comprising the hydrocarbon-immiscible ionic liquid comprising at least the portion of the removed contaminant.