Abstract:
A catalyst is provided for hydrodeoxygenation and hydroisomerization of paraffins having higher activity. The catalyst contains a molecular sieve, such as SAPO-11, a metal component such as platinum and/or palladium or nickel tungsten sulfide or nickel molybdenum sulfide and a binder such as gamma alumina. The catalyst exhibits a high proportion of weak acid sites and a relatively equal distribution of the metal component on the molecular sieve and the binder.
Abstract:
Methods and apparatuses are disclosed for upgrading a hydrocarbon feedstream comprising passing the hydrocarbon feedstream to a first hydroprocessing reactor in a reaction vessel to produce a first hydroprocessed effluent stream. The first hydroprocessed effluent stream is separated in a hot separator to produce a vapor stream and a liquid hydrocarbon stream. At least a portion of the liquid hydrocarbon stream is passed to a second hydroprocessing reactor disposed in the reaction vessel above the first hydroprocessing reactor, to produce a second hydroprocessed effluent stream. A liquid product stream is separated from the second hydroprocessing effluent stream. The vapor stream from the hot separator is mixed with the liquid product stream to provide a combined stream.
Abstract:
The process and apparatus of the present invention selectively hydrogenates a heavier olefinic naphtha stream in an upstream catalyst bed and the hydrogenated effluent and a lighter olefinic naphtha stream in a downstream catalyst bed. The heavier di-alkenes are less re-active and are contacted with more hydrogenation catalyst than the lighter di-alkenes which are more re-active.
Abstract:
Methods and apparatus for removing sulfur compounds from a hydrocarbon stream are disclosed. In one exemplary embodiment, a method for removing sulfur compounds from a hydrocarbon stream includes the steps of steam stripping a mixed hydrocarbon stream to form a steam stripped overhead stream comprising naphtha and lighter hydrocarbons and a steam stripped bottoms stream comprising naphtha and heavier hydrocarbons; fractionating the steam stripped bottoms stream to form a fractionated overhead stream comprising naphtha hydrocarbons; combining the steam stripped overhead stream with a portion of the fractionated overhead stream and an H2-rich makeup gas stream; and hydrodesulfurizing the combined stream to form an HDS reaction effluent stream.
Abstract:
One exemplary embodiment can be a process for treating a naphtha stream. The process may include providing the naphtha stream to a fractionation zone. The fractionation zone may include a fractionation column producing a first stream having one or more C5− hydrocarbons and a second stream withdrawn at a lower elevation on the fractionation column than the first stream and having one or more C5+ hydrocarbons, and sending at least a portion of the second stream to an aromatics complex for producing at least one of benzene, toluene, and para-xylene.
Abstract:
A process and apparatus for reducing the sulfur content of naphtha. The process includes introducing at least a portion of a naphtha feed stream to a selective hydrodesulfurization zone under selective hydrodesulfurization conditions in the presence of a selective hydrodesulfurization catalyst to form a low sulfur stream which contains mercaptan and thiophene compounds. At least a portion of the low sulfur stream is separated into at least two streams, a mercaptan rich stream containing mercaptan and thiophene compounds and an overhead stream containing hydrogen sulfide and liquid petroleum gas. The mercaptan rich stream is treated in an adsorbent zone to remove at least a portion of the mercaptan and thiophene compounds to form a mercaptan lean stream.
Abstract:
The process and apparatus of the present invention selectively hydrogenates a heavier olefinic naphtha stream in an upstream catalyst bed and the hydrogenated effluent and a lighter olefinic naphtha stream in a downstream catalyst bed. The heavier di-alkenes are less re-active and are contacted with more hydrogenation catalyst than the lighter di-alkenes which are more re-active.
Abstract:
A method and apparatus for processing hydrocarbons are described. The method includes fractionating a hydrocarbon stream to form at least two fractions. The first fraction is reformed to form a reformate stream, and the reformate stream is introduced into an aromatics processing zone to produce aromatic products. At least a portion of the second fraction is cracked in a fluid catalytic cracking unit. A selectively hydrogenated light naphtha stream is formed by separating the cracked hydrocarbon stream into at least two streams and selectively hydrogenating the light naphtha stream, or selectively hydrogenating the cracked hydrocarbon stream and separating the hydrogenated cracked hydrocarbon stream into at least two streams. Aromatics are extracted from the selectively hydrogenated light naphtha stream forming an extract stream and a raffinate stream. The extract stream is hydrotreated, sent to the aromatics processing zone to produce additional aromatic products.
Abstract:
A catalyst is provided for hydrodeoxygenation and hydroisomerization of paraffins having higher activity. The catalyst contains a molecular sieve, such as SAPO-11, a metal component such as platinum and/or palladium or nickel tungsten sulfide or nickel molybdenum sulfide and a binder such as gamma alumina. The catalyst exhibits a high proportion of weak acid sites and a relatively equal distribution of the metal component on the molecular sieve and the binder.
Abstract:
The present invention discloses a process and apparatus for selectively hydrogenating diolefins in a cracked stream. The method combines a conversion unit and a recovery section. The recovery section includes the diolefin hydrogenation reactor that is used to selectively hydrogenate the diolefins in the cracked naphtha. The diolefin depleted naphtha may be debutanized to separate the stabilized naphtha and liquefied petroleum gas streams.