Abstract:
An improved reforming process for producing aromatic hydrocarbons is disclosed. The process includes two reformers arranged in parallel flow configuration, with the first reformer being a conventional reformer comprising a catalyst selective for reforming C8+ hydrocarbons to a reformate and the second reformer comprising a catalyst selective for reforming C7− hydrocarbons to a reformate. In certain embodiments, the first reformer catalyst comprises a conventional alumina catalyst and the second reformer catalyst comprises a ZSM-5 catalyst.
Abstract:
A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
Abstract:
A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
Abstract:
A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
Abstract:
A process for refining naphtha that results in an improved octane value in a subsequent gasoline blend. Certain embodiments include separating a naphtha feed into light naphtha and heavy naphtha; separating the heavy naphtha into a paraffin stream and non-paraffin stream; introducing the light naphtha to a first isomerization unit, introducing the paraffin stream to a second isomerization unit; introducing the non-paraffin stream to a reforming unit and combining the resulting effluents to form a gasoline blend. The resulting gasoline blend has improved characteristics over gasoline blends that are made without introducing the paraffin stream to a second isomerization unit.
Abstract:
A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
Abstract:
This process relates to reforming a full-boiling range hydrocarbon feed in two parallel stages while maximizing the catalyst life of the heavy cut reformer and/or reducing the complexity of the plant by preferentially sending the higher purity Aromax.RTM. hydrogen to the heavy cut reformer.
Abstract:
A process is disclosed for reforming two hydrocarbon feedstocks by contacting one feedstock and hydrogen with a reforming catalyst in a first reforming zone at reforming conditions including a relatively high reforming pressure; separating a hydrogen-rich gas and first hydrocarbon product from the effluent from the first zone at a pressure below the first reforming pressure; recycling a first portion of the hydrogen-rich gas to provide hydrogen for the first reforming zone; contacting the other feedstock and a second portion of the hydrogen-rich gas with a second reforming catalyst in a second reforming zone at reforming conditions including a pressure lower than the first reforming pressure, with all of the hydrogen gas introduced into the second reforming zone being obtained solely from the first reforming zone effluent; and recovering a second hydrocarbon product from the effluent from the second reforming zone. The process eliminates a hydrogen recycle compressor for the second reforming zone and operates without compressing hydrogen passed from the first reforming zone to the second reforming zone.