Abstract:
An image recording method includes a process of applying an ink containing a pigment to a recording medium, and a process of applying a liquid composition containing organic acid to the recording medium in such a manner as to be at least partially overlapped with a region to which the ink is applied. The content (% by mass) of the organic acid in the liquid composition is 10% by mass or more based on the total amount of the liquid composition. The content (% by mass) of an organic solvent in the liquid composition is 5% by mass or more based on the total amount of the liquid composition. The content (% by mass) of an organic solvent having a hydroxyl group in the liquid composition is 4% by mass or less based on the total amount of the liquid composition.
Abstract:
An ink jet ink composition for sublimation transfer includes dye A and a dye B, in which the dye A is a disperse dye which has a molecular weight of 380 or less and an anthraquinone skeleton having a water-soluble group in a molecule, the dye B is a disperse dye which has a molecular weight of 400 or greater, and in the ink jet ink composition for sublimation transfer, dye solubility of the dye A is greater than dye solubility of the dye B.
Abstract:
A method is provided for forming a solution-processed metal and mixed-metal selenide semiconductor using selenium (Se) nanoparticles (NPs). The method forms a first solution including SeNPs dispersed in a solvent. Added to the first solution is a second solution including a first material set of metal salts, metal complexes, or combinations thereof, which are dissolved in a solvent, forming a third solution. The third solution is deposited on a conductive substrate, forming a first intermediate film comprising metal precursors, from corresponding members of the first material set, and embedded SeNPs. As a result of thermally annealing, the metal precursors are transformed and the first intermediate film is selenized, forming a first metal selenide-containing semiconductor. In one aspect, the first solution further comprises ligands for the stabilization of SeNPs, which are liberated during thermal annealing. In another aspect, the metal selenide-containing semiconductor comprises copper, indium, gallium diselenide (CIGS).
Abstract:
A fixer composition is disclosed herein. An example of the fixer composition includes from about 5 wt % to about 25 wt % of a co-solvent, from about 1 wt % to about 20 wt % of a calcium salt, from about 0.01 wt % to about 0.6 wt % of a sulfonated chelating agent, and a balance of water.
Abstract:
A radiation curable liquid includes at least one free radical polymerizable monomer or oligomer, at least one diffusion hindered acetalysation catalyst, and at least one diffusion hindered hydroxyl containing compound. The radiation curable liquid applied to a substrate prevents migration of very low viscous monomers, such as vinyl ether acrylate monomers, into the substrate.
Abstract:
A fixer composition is disclosed herein. An example of the fixer composition includes from about 5 wt % to about 25 wt % of a co-solvent, from about 1 wt % to about 20 wt % of a calcium salt, from about 0.01 wt % to about 0.6 wt % of a sulfonated chelating agent, and a balance of water.
Abstract:
An ink jet ink composition for sublimation transfer includes dye A and a dye B, in which the dye A is a disperse dye which has a molecular weight of 380 or less and an anthraquinone skeleton having a water-soluble group in a molecule, the dye B is a disperse dye which has a molecular weight of 400 or greater, and in the ink jet ink composition for sublimation transfer, dye solubility of the dye A is greater than dye solubility of the dye B.
Abstract:
The present invention relates to [1] an ink-jet printing method including the steps of applying an ink (A) having a static surface tension of from 23 to 70 mN/m and containing a poly(N-acylalkylene imine)-modified silicone and a cationic polymer onto a recording medium, and then applying by ink-jet printing, a water-based ink (B) onto the recording medium; [2] a recording paper for ink-jet printing which is obtainable by applying an ink (A) having a static surface tension of from 23 to 70 mN/m and containing a poly(N-acylalkylene imine)-modified silicone and a cationic polymer onto a recording medium; and [3] a water-based ink set including an ink (A) having a static surface tension of from 23 to 70 mN/m and containing a poly(N-acylalkylene imine)-modified silicone and a cationic polymer, and a water-based ink (B) containing an anionic colorant.
Abstract:
The present invention relates to [1] an ink-jet printing method including the steps of applying an ink (A) having a static surface tension of from 23 to 70 mN/m and containing a poly(N-acylalkylene imine)-modified silicone and a cationic polymer onto a recording medium, and then applying by ink-jet printing, a water-based ink (B) onto the recording medium; [2] a recording paper for ink-jet printing which is obtainable by applying an ink (A) having a static surface tension of from 23 to 70 mN/m and containing a poly(N-acylalkylene imine)-modified silicone and a cationic polymer onto a recording medium; and [3] a water-based ink set including an ink (A) having a static surface tension of from 23 to 70 mN/m and containing a poly(N-acylalkylene imine)-modified silicone and a cationic polymer, and a water-based ink (B) containing an anionic colorant.
Abstract:
An image recording method includes a process of applying an ink containing a pigment to a recording medium, and a process of applying a liquid composition containing organic acid to the recording medium in such a manner as to be at least partially overlapped with a region to which the ink is applied. The content (% by mass) of the organic acid in the liquid composition is 10% by mass or more based on the total amount of the liquid composition. The content (% by mass) of an organic solvent in the liquid composition is 5% by mass or more based on the total amount of the liquid composition. The content (% by mass) of an organic solvent having a hydroxyl group in the liquid composition is 4% by mass or less based on the total amount of the liquid composition.