Abstract:
A deviation handling apparatus for a continuous production system of granulated products includes a storage section for temporarily storing the products, an inspection section for inspecting selected physical properties of the products, a moving route switching section for switching the moving route of the products according to the results of the inspection and a discharge path for discharging the products judged as not meeting the specifications. The storage section has two shutoff valves and a storage chamber formed therebetween. The switching section has a switching valve having a normal position and a deviation position for causing a conveyance route to communicate with the discharge path. The deviation handling apparatus closes the shutoff valves to store products in the storage chamber and inspect properties of the products. When off-specification products are detected, the switching valve is switched to the deviation position and the products are discharged.
Abstract:
A material distribution system includes: a chassis; a material tank carried by the chassis and configured to hold a material; and a header configured to receive and distribute material from the material tank entrained in an air flow. The header includes: a header body having a pair of sidewalls, an inlet configured to receive entrained material from the material tank and a plurality of outlets, the sidewalls defining a width therebetween that increases from the inlet toward the plurality of outlets; a valve associated with an outlet that is configured to switch between a distributing position and a purging position, the valve blocking its outlet in the purging position; and a plenum having a volume of air that is selectively in fluid communication with the plurality of outlets to provide a purging air flow to the outlet with the associated valve when the valve is in the purging position.
Abstract:
The invention relates to a coupling point serving to form a coupling station between at least two senders and at least one receiver of a pneumatic conveyance system for conveying bulk material. The bulk material is directed by sender tubes and receiver tubes, which fluidically connect the sender and the receiver to the coupling station (6). The coupling point is a plug-in module which has at least one sender divider tube (7) and at least one receiver divider tuber (12). The sender divider tube (7) has at least one outlet (10) and the receiver divider tube (12) has at least one inlet (15) for the bulk material. The sender divider tube (7) and the receiver divider tube (12) each have at least one connection (9, 14) for a next plug-in module (21) or a sender tube (4) or receiver tube (5). The outlet (10) of the sender divider tube (7) and the inlet (15) of the receiver divider tube (12) can be closed or released. The coupling station has at least two dimensionally stable plug-in modules, each having at least one sender divider tube and at least one receiver divider tube which are fluidically connected or connectable to each other.
Abstract:
Device and a system for changing a flow path. The device is connected one first pipeline and at least two other pipelines, such as a second pipeline and a third pipeline. A member is provided for changing the pathway of the medium between the one first pipeline and any of at least two other pipelines. The first pipeline is arranged to be bendable at least at the point of its free end formed to be moveable, or in the proximity of said point. The member for changing the pathway of the medium includes a member for moving the free end of the first pipeline, and a coupler for coupling and uncoupling the free end of the first pipeline with at least one other pipeline.
Abstract:
A discharge system for removing a solid/gas mixture from a fluidized bed pressure vessel is provided. The system includes a fluidized bed pressure vessel, settling vessels, discharge lines, primary discharge valves, vent lines, primary vent valves, crosstie lines, crosstie valves, and primary exit valves wherein the system is absent a transfer tank, and absent a filter element. The method provides for transferring a solid/gas mixture via a discharge line from the pressure vessel to a settling vessel, wherein gas is separated from the mixture, and the gas is transferred to at least one other settling vessel via a crosstie line. After the solids are transferred out of the settling vessel, the empty vessel then receives gas from other settling vessels in the system.
Abstract:
A pumping mechanism and the distributing valve thereof and a concrete pumping machine are disclosed. The distributing valve includes a valve casing (100) and a valve core (200) located in the pumping chamber of the valve casing. The valve core is rotatably connected to the valve casing, thus forming a main rotating axis (O). The valve casing has a discharge hole (103) throughout the casing wall, a first suction hole (101) and a second suction hole (102). The valve core has a distributing port (202) and a feed port (201) communicated with a material container. A pumping channel is formed between the peripheral face of the valve core and the inner wall face of the pumping chamber. The peripheral face of the valve core is provided with two cutting plates (210) protruding from two sides of the distributing port respectively. The outer side faces of the two cutting plates are rotatably sealedly matched with the sealing face of the valve casing. In a first state, the distributing port is communicated with the first suction hole through the space between the two cutting plates. In a second state, the distributing port is communicated with the second suction hole through the space between the two cutting plates. The distributing valve has a smaller matching area for cutting so as to ensure better sealing performance whilst have higher driving performance.
Abstract:
A pneumatic conveying system is disclosed for conveying a granular product, such as grain, from a grain inlet device to a selected one of a plurality of grain bins or other storage vessels. The system includes a blower for forcing air under pressure into a conveyor piping system. A grain inlet device is located downstream from the blower. The piping system has a portion leading from the grain inlet to an inlet in a first one of the vessels. A discharge/bypass valve is connected to a portion of the piping system leading from the grain inlet so as to receive the granular product being conveyed therethrough with the valve having a discharge outlet for discharging the granular product into the vessel. The valve is installed on the vessel such that the discharge outlet is in communication with the interior of the vessel. The valve further has an inlet coupling operatively connected to the piping system and an outlet coupling operatively connected to another portion of the piping system downstream of the valve leading to another of the vessels. The valve has a sleeve movable between a discharge position in which the inlet coupling is disconnected from the outlet coupling such that the granular product is discharged from the piping system into the valve and then is discharged into the vessel and a by-pass position in which the inlet and outlet couplings are operatively connected so that the granular product is conveyed through the valve and into the piping system downstream from the valve.A method of pneumatically conveying such a granular material to any one of a plurality of bins or other storage vessels is also disclosed.
Abstract:
In order to prevent the contamination of particulates such as food material particulates, facilitate maintenance, and to enhance the process sealing accuracy, a flow path switchover device is presented. The device of the present invention has a tube assembly including first and second main tube members and a branch member. The first and second main tube members are interconnected via a first ring member. The first main tube member and the branch member are interconnected via a second ring member arranged at a preset angle with the first ring member. A metal changeover damper supported on a rotating shaft swings between the first and second ring members and accordingly blocks and seals either the connection between the first main tube member and the second main tube member or the connection between the first main tube member and the branch tube member, while allowing the other connection.
Abstract:
It is an object of the present invention to provide a changeover valve which is capable of preventing granular material from being crushed when the granular material is transported by gas through a pipe system, and more particularly a changeover valve which is capable of preventing grain from being crushed, broken, and chipped when the grain such as rice is transported by gas through the pipe system. It is another object of the present invention to provide a gas transportation pipe system for grain to which the changeover valve is applied. The changeover valve according to the present invention comprises: a valve disc in a cylinder shape including on a side part thereof a through passage which is connected to transportation passages on an upstream side and a downstream side and which is in an eccentric position deviated from a center of the cylinder; a casing for rotatably accommodating the valve disc therein; and a pair of discharge passages which are provided in the casing and connected to the through passage of the valve disc, and an inside diameter of an introducing passage of the changeover valve at an output end thereof is smaller than an inside diameter of the through passage of the valve disc and an inside diameter of the introducing passage in an output side part has a shape gradually decreasing in size toward the downstream side while an inside diameter of each of the pair of the discharge passages at an input end thereof is larger than the inside diameter of the through passage of the valve disc and an inside diameter of each of the pair of the discharge passages in an input side part has al shape gradually increasing in size toward the upstream side.
Abstract:
A fluid handling installation for selectively connecting any one of a plurality of inlet conduits to any one of a plurality of outlet conduits includes a frame supported manifold configuration of a plurality of perpendicular conduits and corresponding connection modules that can be selectively operated to connect inlet and outlet conduits.