Abstract:
A conveyor system for containers including a conveyor module configured to convey and meter a stream of containers, including a first star wheel configured to move a plurality of first containers along a first travel path, wherein the first containers each have a first geometric center, and wherein the first travel path is defined by the geometric center of the first containers, and a second star wheel configured to move a plurality of second containers along a second travel path, wherein the second containers each have a second geometric center, and wherein the second travel path is defined by the geometric center of the second containers.
Abstract:
A container conveying apparatus wherein retainers (1) are disposed along a retainer movement rail (52), and the one-time movement distance of a retainer is set to be an integer multiple of the spacing p of the retainers and to be different values in the two straight sections (A lane and B lane) of the retainer movement rail. If the maximum value of the one-time movement distance of a retainer in the straight sections is n times the spacing p, and the maximum number of retainers that can be disposed along the retainer movement rail is m, then the number of retainers actually disposed along the retainer movement rail is preferably m−n. The number of retainers m−n is an integer multiple of n, and all retainers disposed along the retainer movement rail are linked together in groups of n retainers at spacing p.
Abstract:
A gripper for grasping and conveying objects while retaining the objects, and to a corresponding conveyor system and an operating method. The gripper has a gripper body and first and second gripper jaws. The gripper jaws each include at least one respective clamping region, can assume an open state and a closed state relative to each other, and can exert a clamping force on each other or on the object to be grasped. At least one of the gripper jaws includes a jaw body that is elastically deformable and is supported on the gripper body such that the body assumes a defined spatial position (resting position) when force is not applied to a control element and deforms and is deflected from the resting position when force is applied to the control element.
Abstract:
An automatic device for separating products based on their external flaws, includes a mechanism for selective separation and discharge of the products, in which the suitable products are unloaded onto a first discharge conveyor, and the unsuitable products are unloaded onto a second discharge conveyor; and a set of securing clamps for the products in their radial displacement on the discharge head of the machine jointly and simultaneously with the transport items of the products, whose activation depends on the suitable or unsuitable status of the product.
Abstract:
This device comprises a pair of parallel arms (1, 2) having clamps (11, 21) for clamping the packages (E) to be transported and means for regulating separation which comprise:—a scissor mechanism (4) having two rods (41, 42) articulated to the rear end of the arms (1, 2) and carrying roller means (46, 47);—guide sections (5, 5a . . . ) distributed on the packaging machine, provided with a longitudinal track (51) for guiding the roller means (46, 47) of the scissor mechanism (4) and—actuating means (7) suited to moving each guide section (5, 5a) and arranging the latter in a position suited to determining the separation of each pair of parallel arms (1, 2) in each area of the route of the transport device by means of a variation in longitude of the scissor mechanism (4).
Abstract:
Disclosed is a grip width adjusting mechanism incorporated in a packaging machine having a grip unit. The grip width adjusting mechanism includes a plurality of grip width adjusting plates disposed at the steps and set with distances between the guide rail and the grip width adjusting plates according to the work content of the steps, respectively and a grip width adjusting lever having a distal end having a grip width adjusting roller abutting against each grip width adjusting plate by a biasing force of the spring, respectively. The grip width adjusting lever is located on either one of the arms so as to be rotated with the arm. A rotational movement angle of the grip width adjusting lever is set according to the distance between the guide rail and the grip width adjusting plate, with the result that the grip width is adjusted.
Abstract:
An apparatus for conveying products to a destination has a revolving conveyor chain embodied by entraining elements revolving along a first continuous track and have a certain chain pitch. A revolving conveying device is disposed with grippers arranged at a distance therebetween on the conveying device revolving around a second continuous track. A first zone of the first and second continuous track transfers products from the first continuous track on the conveyor chain to the second continuous track via the grippers. A second zone of the second continuous track delivers products from the grippers at the destination. A third zone of the first and second continuous track returns products not needed at the destination from the grippers on the second continuous track to the conveyor chain on the first continuous track. A distance traveled by the conveyor chain on the first continuous track from a transfer point of the products in the first zone to a return point in the third zone and a distance traveled by the grippers on the second continuous track from the transfer point of the products in the first zone to the return point in the third zone are chosen such that a phase shift amounting to a fraction of the chain pitch occurs between the conveyor chain and the gripper between the return point and the transfer point.
Abstract:
A gripper has a pair of supports 22A, 22B positioned on opposite sides of a bottle made of resin, and abutments 24A, 24B disposed respectively on the supports 22A, 22B for holding the bottle 4 made of resin, each of the abutments 24A, 24B have two thin plates 26A, 28A, 26B, 28B which are vertically spaced from each other. The abutments 24A, 24B hold the bottle 4 by gripping a neck 4a of the bottle 4 on its opposite sides. While holding the bottle 4, the supports 22A, 22B are held out of contact with an outer surface of the bottle 4, allowing the electron beam to travel around the neck 4a to sterilize the entire surface of the bottle 4.
Abstract:
When a bottle 4 made of resin is irradiated with an electron beam while it is being held by a gripper 2, an area of the bottle 4 which is shielded from the electron beam by the gripper 2 is minimized.The gripper has a pair of supports 22A, 22B positioned on opposite sides of the bottle made of resin, and abutments 24A, 24B disposed respectively on the supports 22A, 22B for holding the bottle 4 made of resin, each of the abutments 24A, 24B comprising two thin plates 26A, 28A, 26B, 28B which are vertically spaced from each other. The abutments 24A, 24B hold the bottle 4 by gripping a neck 4a of the bottle 4 on its opposite sides. While holding the bottle 4, the supports 22A, 22B are held out of contact with an outer surface of the bottle 4, allowing the electron beam to travel around the neck 4a to sterilize the entire surface of the bottle 4.
Abstract:
A container processing machine (M) with at least one carousel (1, 1′) which defines a multiple-row processing section (2, 2′), processing devices (24, 25) which move concurrently in multiple rows with the carousel, container holding element groups which are attached to sections of a concurrently moving conveyor device (3), holding elements (H), at least within the processing section (2, 2′), that are positioned next to each other transversely to the conveyance direction, and feed and removal systems (Z, A) for the loading and the unloading of the holding elements (H). The feed and removal systems (Z, A) are designed with a single row, while the holding elements (H) of the groups are resettable between a single-row position, in which they are oriented at least approximately parallel to the conveyance direction, and, in the area of the loading and unloading zones (L, E), a position resetting device (U) for the holding elements. In a procedure for loading and loading a container processing machine (M), the holding element groups are loaded from only one single row (D) and unloaded again into a single row (D), and the holding element groups, for the loading and unloading with respect to the conveyor device (3), are temporarily reset between single-row and multiple-row positions.