Abstract:
A structural wall unit system includes a plurality of wall units having at least one face being a rotational tessellation. The face has at least two irregular sides extending therefrom. Each side of the wall units have at least one spacer or connector configured to engage other wall units. The structural wall unit system also includes a plurality of starter course units, where each starter course unit has a portion of a primary rotational tessellation element having at least one irregularly shaped side that is an image of the first side or the third side. Each irregularly shaped side of the starter course units have at least one spacer or connector configured to engage the wall units, and the starter course units have at least one straight side. The starter course units and the wall units are configured for assembly as a structural wall having a natural, random appearance.
Abstract:
A method of making a modular textile system includes dividing a textile web having a length and a width into a plurality of tile areas including a first tile area, a second tile area, and a third tile area. The textile web includes a plurality of discrete design zones extending along the length of the textile web. The textile web is divided so that the first design zone is apportioned between the first tile area and the second tile area, and the second design zone is apportioned between the second tile area and the third tile area.
Abstract:
A method of printing a decoration on a substrate includes applying an ink coating in a predetermined design on the substrate by inkjet printing. The ink coating is cured to form a cured ink coating, and a portion of the cured ink coating is trimmed. Residual ink particles generated by the trimming are cleaned off the substrate. A printed substrate includes a substrate and a decoration printed on the substrate. The decoration comprises at least one layer of an inkjet-printed ink coating free of a saw edge and having a thickness in a range from 1.5 μm to 5 μm.
Abstract:
A method for manufacturing a metal ornament including an ornamental portion by processing a metal plate. The method includes forming a first resin piece including a recess corresponding to the ornamental portion on one surface of the plate, forming an opening in the plate by cutting the plate along the recess, and forming a second resin piece shaped in conformance to the ornamental portion in the plate by filling the opening and the recess with a resin. When the cut plate includes a main body and an island separated from the main body, the first resin piece is formed to include an extension that supports the island.
Abstract:
A surface covering unit includes at least one face comprised of at least one primary rotational tessellation element. The rotational tessellation element includes at least two pairs of sides, and the sides in each pair of sides have the same length and are images of one another. The sides of a first pair of sides extend from a first vertex and are rotationally spaced from each other, and the sides of a second pair of sides extend from a second vertex and are rotationally spaced from each other. The sides of the first and second pairs of sides have two or more straight line segments or complex curves, and are not a single straight line or a single curve. One pair of sides has a length different from the other pair of sides. The surface covering has a natural appearance such that a repeating pattern is not readily apparent.
Abstract:
A surface covering comprises multiple units adapted to mate with one another and cover a surface. Each said unit comprises at least one primary rotational tessellation element that defines the sides of the unit, has an irregular configuration, includes a face having molded surface irregularities or variations therein, and has at least two pairs of irregularly shaped sides. Preferably, gaps of variable width are defined between visible edges of adjacent units in the surface covering. The surface covering has a natural appearance such that a repeating pattern is not readily apparent. A structural wall unit system is also provided.
Abstract:
A method of making a modular textile system includes dividing a textile web having a length and a width into a plurality of tile areas including a first tile area, a second tile area, and a third tile area. The textile web includes a plurality of discrete design zones extending along the length of the textile web. The textile web is divided so that the first design zone is apportioned between the first tile area and the second tile area, and the second design zone is apportioned between the second tile area and the third tile area.
Abstract:
To obtain a covering on a supporting structure that has a visual appearance that varies with the angle of light from a light source impinging on the covering, there are provided parquet blocks having reference edges and top surfaces with geometric forms in parallel relationship extending to a higher elevation than the block's adjacent surface portions and extending at angles relative to the reference edges that varies from that of other blocks. The parquet blocks in plan view 5 be of varying shapes such as rectangular, triangular, etc. while the geometric forms may be, for example, any one of parallel ridges, lands between parallel slots, rows of selected shapes in linearly spaced, linear alignment, etc. Indicia may be provided on the blocks together with a chart having markings facilitating selecting and adhering the blocks to the supporting structure to obtain the desired pattern.
Abstract:
An irregular, tessellated building unit comprises x primary elements, wherein x is an integer equal to or greater than 1. The primary element is a rotational tessellation having a plural pairs of sides extending in a generally radial direction from plural vertices, respectively. In each pair, the two sides are rotationally spaced by an angle that is divided evenly into 360 degrees. Preferably, all of the sides are irregularly shaped, but one or more sides could be wholly or partially straight. Optionally, spacers are provided on the sides of each unit. A wide variety of units may be constructed having different numbers and arrangements of primary elements. As all the units are combinations of primary elements, they readily mate with each other. A surface covering comprises a multiplicity of units assembled to form a continuous surface without overlap between units and without substantial gaps between units. A structure, such as a wall or column can be formed of building units of the invention. Because of the irregular side configurations, and different sizes and shapes of individual units, the resulting surface or structure has a natural, non-repeating pattern appearance. Optionally, minor surface and edges variations are made from unit to unit to further enhance the natural appearance of the surface covering or structure.
Abstract:
A method of fabricating a case for a portable electronic device includes: preparing a case preform; processing the inner surface of the case preform using a laser; and surface-treating the outer surface of the case preform, wherein the outer surface of the case preform shows fine prominences and depressions formed by the surface-treating of the outer surface of the case preform, and patterns formed by processing the inner surface of the case preform appear bumpily on the outer surface of the case preform.