Abstract:
An iso-grid composite component according to an exemplary aspect of the present disclosure includes a spacer transverse to a uni-tape ply bundle, the spacer interrupted by the uni-tape ply bundle.
Abstract:
A method for producing structures from composite materials, the method including forming a three-dimensional preform including at least one skin and a plurality of protrusions extending from the at least one skin, folding the three-dimensional preform such that at least some of the plurality of protrusions lie adjacent to either another one of the plurality of protrusions or the at least one skin and applying resin to the folded three-dimensional preform and curing, thereby to produce the structures from adjacent pairs of the protrusions or from some of the protrusions and the at least one skin.
Abstract:
A composite mandrel includes a filament-wound composite tube, and composite material molded over the filament-wound composite tube. For example, the composite material includes chopped fibers and a matrix of thermoset resin. The chopped fibers are arranged in layers upon the filament-wound composite tube, and the chopped fibers in each of the layers are randomly oriented along first and second orthogonal directions in each of the layers. The composite material includes at least one sheet of the composite material wound over the filament-wound tube, and at least one strip of the composite material wound over the sheet of the composite material and forming a head on the composite mandrel. An internal cavity of the filament-wound composite tube may provide a lumen for the composite mandrel. The internal cavity may be threaded to receive a removable bridge plug.
Abstract:
A composite web structure utilizing a thin first layer of material having a plurality of structural fibers arranged to lie essentially in a unidirectional orientation. A thin second layer of material is positioned adjacent the first layer and includes a plurality of structural fibers. First and second layers are impregnated with a matrix material for binding fibers within the first and second layers and for binding the first and second layers together. The web may be formed into a composite structure such as a honeycomb core for fabrication into a panel.
Abstract:
An apparatus for forming reinforcing structural rebar comprising a core of a thermosetting resin containing reinforcing material and an outer of sheet molding compound is provided. The apparatus comprises layer reinforcing material supply, a thermosetting resin supply means, a shaping die, means for impregnating the reinforcing material the reinforcing material with resin, means for pulling the reinforcing material through the shaping die to form the core of the thermosetting resin containing reinforcing material, sheet molding compound supply, guide means for guiding the sheet molding compound onto the core, and mold means for molding the outer layer of sheet molding compound onto the core.
Abstract:
A composite web structure utilizing a thin first layer of material having a plurality of structural fibers arranged to lie essentially in a unidirectional orientation. A thin second layer of material is positioned adjacent the first layer and includes a plurality of structural fibers. First and second layers are impregnated with a matrix material for binding fibers within the first and second layers and for binding the first and second layers together. The web may be formed into a composite structure such as a honeycomb core for fabrication into a panel.
Abstract:
A golf club shaft comprising a mandrel with a tapered surface as its outer circumference which is wound with three layers of prepreg sheets of high-strength fiber impregnate with synthetic resin. The middle layer is also wound with a separate string member. The inner layer fibers and the separate string member are arranged in a criss-cross pattern running generally in the longitudinal axial direction of the shaft. However, the fibers which are part of the middle and outer layers run unidirectionally only in the longitudinal axial direction of the shaft. No fibers run in a circumferential direction. In addition, the fiber and matrix of the outer layer become transparent after curing. Thus, even when the shaft is shrunk toward the center, no zigzag or wrinkles are generated in the string member found between the middle and outer layers nor in the outer layer fibers themselves. Also, no zigzagging, wrinkling, sagging or whitening occurs in the transparent outer layer which allows the design pattern of the string member to be seen. This increases the strength of the shaft and sufficient clamping stress by taping is provided. Finally, the safety of the club shaft is increased because the outer layer prevents exposure of the fibers and string member which decreases the chance of breakage.
Abstract:
A process for producing a reinforced plastic motor vehicle bumper includes the steps of placing a woven roving (17) on a center section of a preform screen (10) that is retained by a vacuum draw from a suction fan (16). Chopped glass fibers (20) and a curable binder are sprayed onto the preform screen and woven roving. A second layer (22) of woven roving is placed onto the center section of chopped glass and first layer (17) of woven roving. Either the excess trim (39) is trimmed by a cutting die (50) before the preform is cured or the die is first cured and then the excess trim is trimmed by a cutter using a plastic base (35) in the screen that circumscribes the contoured section of the preform screen.
Abstract:
The invention concerns a novel mesh structure with high resistance in particular to piercing and tearing.The object of the invention is a novel mesh structure with high resistance in particular to piercing and to tearing, characterized in that it comprises a knit structure, the texture of which is formed of an entirety of forward meshes comprising a quilting stitch, two cylindrical reverses and a flat weft, repeated every eight drops, with the threads constituting the knit being formed of polyaramide fibers.The invention is useful in the fashioning of clothing, linings or walls for protective and/or safety purposes.
Abstract:
A helical torsion spring (10) composed of unidirectional graphite fibers (26) encased in an epoxy resin matrix of rectangular cross section. The graphite fibers are longitudinally oriented relative to the core of the coil spring and can be located adjacent the inner and outer surfaces of each of the coils.