摘要:
A hot runner nozzle heater is provided that includes a sleeve defining a slot extending along a length of the sleeve. A first dielectric layer is disposed over an outer surface of the sleeve, and a resistive element layer is disposed over the first dielectric layer, wherein the resistive element layer defines a resistive circuit pattern that is preferably formed by a laser trimming process. A pair of terminal leads are secured to a portion of the resistive element layer thus defining a termination area, and the termination area is positioned proximate the slot and away from the proximal end and the distal end of the sleeve. A second dielectric layer is disposed over the resistive element layer but not over the termination area, a third dielectric layer is disposed over the termination area, and a protective layer disposed over the second dielectric layer and the third dielectric layer.
摘要:
The present invention provides improved heated manifolds, heaters and nozzles for injection molding, having a high strength metal skeleton infiltrated with a second phase metal having higher thermal conductivity. Also disclosed is method of forming a manifold, heater or nozzle preform and infiltrating the preform with a highly thermally conductive material. The invention also provides a method of simultaneously infiltrating and brazing injection molding components of similar or dissimilar materials together.
摘要:
A nozzle 10 for an injection mold has a nozzle body 12 which can be mounted on a mold or manifold and in which at least one duct 22 for molten material is provided which opens at a terminal side at, or in, a nozzle tip 26. In order to be able to realize extremely small pitches in two independent directions in space, the nozzle body 12 has at least one substantially plane lateral surface 14, 15 which carries or accommodates in a plane 2D-type joining and/or arrangement a heating and/or cooling device 28, 28′ for the molten material. In a special embodiment, the nozzle 10 within in a row of nozzle R are located next to each other in very close relationship, and two opposing lateral surfaces S or the row of nozzles R are provided with heating and/or cooling devices 28, 28′, which are adapted to be connected in groups to a heating or cooling circuit via a common external terminal.
摘要:
The invention relates to a nozzle (10) for an injection moulding tool, comprising a nozzle body (12), which may be mounted on a tool or distributor and in which at least one flow channel (22) for a material melt is arranged, which discharges at the end of, or in a nozzle tip (26). The nozzle body (12) comprises at least one essentially flat side surface (14, 15), which carries or accepts, in a plane contact and/or arrangement, a heating and/or cooling device (28, 28null), for the material melt, in order to be able to arrange the moulding cavities extremely closely in two independent spatial directions. In a particular embodiment, the nozzles (10) are arranged parallel and tightly packed together in a nozzle row (R), whereby two side surfaces (S), of the nozzle row (R), which face each other, are provided with heating or cooling devices (28,28null), which may be collectively connected, by means of a common external connector (34), to a heating or cooling circuit.
摘要:
Improved mold manifold and hot runner nozzle using thin film elements include at least one active or passive thin film element disposed along a melt channel between the manifold inlet and the hot runner nozzle. Preferably, the thin film element may comprise a thin film heater in direct contact with the molten resin and position to aid in the heat and flow management of the resin within the melt channel. Thin film temperature sensors, pressure sensors, and leak detectors may also be provided in the vicinity of the melt channel to enhance process control in the injection molding machine.
摘要:
An electric heating unit for hot runner systems, and in particular for hot runner nozzles and/or hot runner manifolds includes at least one tubular or muff-like support and at least one heating layer fitted with heating conductor tracks. The heating layer is a fired foil or a fired thick-film paste and the muff-like support is able to be slipped onto a material feed pipe.
摘要:
A hot-runner system (100), including (but not limited to): a mold insert (132) defining a mold gate (134); and a diamond-based component connected with the mold insert (132), the diamond-based component connected surrounding the mold gate (134).
摘要:
A thick-film electric heater having thick-film layers applied directly on a thermally conductive non-flat substrate. Preferably, the substrate is cylindrically shaped. A dielectric layer is silk-screened on the substrate surface. A resistive layer is silk-screened on the dielectric layer to form a circuit for the generation of heat. The resistive layer has at least one resistive trace in a pattern that is discontinuous circumferentially. At least a pair of silk-screened contact pads are applied in electrical communication with the resistive layer for electrical connection to a power source. An insulation layer is applied over the resistive layer.
摘要:
An injection molding system injection molding system having at least one heater with an arcuate surface and a nozzle that is in thermal communication with the heater and an associated method of use. This injection molding system includes an electrical connector assembly for a heater having at least one electrical connector with a first electrical conductor that is electrically connectable to at least one first conductive portion on a heater and a second electrical conductor that is electrically connectable to at least one second conductive portion on the heater, and at least one disconnect mechanism positioned adjacent to the at least one electrical connector and in electrical connection with the first electrical conductor and the second electrical conductor. An injection molding system can include, but is not limited to, a hot runner system.
摘要:
Improved mold manifold and hot runner nozzle using thin film elements include at least one active or passive thin film element disposed along a melt channel between the manifold inlet and the hot runner nozzle. Preferably, the thin film element may comprise a thin film heater in direct contact with the molten resin and position to aid in the heat and flow management of the resin within the melt channel. Thin film temperature sensors, pressure sensors, and leak detectors may also be provided in the vicinity of the melt channel to enhance process control in the injection molding machine.