Abstract:
A skate blade sharpening system used to sharpen the blades of ice skates. The skate sharpener can include a housing that includes an elongated slot for receiving the blade of an ice skate for sharpening, and clamp jaws for retaining the skate. The housing can include at least one slot cover to engage the skate blade. Engagement of the skate blade can be sensed by a controller to enable sharpening operations to proceed. The skate blade sharpening system can automatically operate a grinding wheel and move the rotating grinding wheel back and forth along the lower face of the skate blade a desired number of times to sharpen the skate blade.
Abstract:
The method is for profiling blades with a belt grinding profiling machine. The blades are mounted into a vise. A vertical position of the template is adjusted by rotating the rotatable knob. The motor is turned on to rotate the grinding belt over the grinding wheel. The guide wheel engages the underside profile of the template. The guide wheel of the template guides movement of the grinding wheel mounted on the common axle by moving the guide wheel along the underside profile of the template. The grinding belt grinds material off the underside of the blade until a portion of the underside profile of the template is copied to the underside of the blade.
Abstract:
The method is for profiling blades with a belt grinding profiling machine. The blades are mounted into a vise. A vertical position of the template is adjusted by rotating the rotatable knob. The motor is turned on to rotate the grinding belt over the grinding wheel. The guide wheel engages the underside profile of the template. The guide wheel of the template guides movement of the grinding wheel mounted on the common axle by moving the guide wheel along the underside profile of the template. The grinding belt grinds material off the underside of the blade until a portion of the underside profile of the template is copied to the underside of the blade.
Abstract:
In at least one embodiment, the present invention discloses a manual blade sharpening tool having a longitudinally extending at least partial channel defined by a longitudinally extending first channel wall, a cutter pocket and a distal planar guide surface located in the longitudinally extending first channel wall, and a longitudinally extending cutter having a longitudinally extending first cutter wall, a longitudinally extending second cutter wall and a transverse cutter surface, the transverse cutter received in the cutter pocket such that one of the longitudinally extending first cutter wall and the longitudinally extending second cutter wall abuts the cutter pocket.
Abstract:
In one aspect, the invention is directed to a sharpener for sharpening a snow/ice travel member such as a skate blade, a ski or a snowboard, which includes a sharpening surface that is movable lengthwise along an edge face of the item to be sharpened. The sharpening surface may be movable lengthwise by means of a motor and a reciprocating mechanism, or may be manually moved by a user.
Abstract:
A grinding wheel assembly for use in a sharpening system includes a grinding wheel configured to be mounted in the sharpening system to carry out sharpening operations in which the grinding wheel removes material from a blade to be sharpened, such as the blade of an ice skate. The grinding wheel assembly further includes an identification tag attached to the grinding wheel, the identification tag having (1) secure memory including a usage location for persistently and securely storing a usage tracking value, and (2) interface circuitry for engaging in communication with a transceiver of the sharpening system to enable electronic circuitry of the sharpening system to both read from and write to the usage location to track usage of the grinding wheel for sharpening operations. The memory may also store other data including user-specific system parameters usable to customize operation, and fault information usable to diagnose fault conditions.
Abstract:
A blade holder tool for inserting a loose skate blade into a sharpener unit for sharpening includes blade-engaging features that engage blade retention features of the skate blade, and a spacing component providing user-controlled variable spacing of the blade-engaging features to hold skate blades across a range of sizes. The tool may include an elongated tool body having a bottom portion configured to receive the skate blade, the tool body supporting the blade-engaging features and spacing component. The blade-engaging features may include a pair of biased-closed housing members engaging the retention features of the skate blade, and a separate tool body may not be required. A spring or elastic member is connected between housing members to bias closed the blade-engaging features. Mechanical and/or graphical features may be used for positioning and orienting the skate blade to the blade holder tool, and/or the blade holder tool to the sharpener unit.
Abstract:
A skate blade sharpening system includes a chassis having a slot for receiving a skate blade, and a skate blade retention mechanism for retaining the skate blade in a sharpening position. The skate blade retention mechanism includes an actuator and a pair of jaws on respective sides of the slot, the jaws being coupled to the actuator and configured for symmetrical opening and closing movements about a centerline of the skate blade. The jaws are secured to the chassis by guide blocks extending though corresponding guide slots of the jaws. The guide blocks have respective angled surfaces contacting corresponding angled surfaces of the jaws permitting the jaws to slide on the guide blocks when the jaws are open. The angled surfaces are oriented in a manner urging the jaws upward against a surface referenced to the chassis as the jaws are urged to a closed position by the actuator.
Abstract:
The method is for sharpening a blade. An automatic sharpening apparatus is provided that has a holder. A blade is placed into the holder. A grinding-wheel driving motor, in operative engagement with a wheel on a spindle, rotates a grinding wheel. A grinding assembly motor moves the grinding wheel in an x-direction towards the blade. A linear motor moves the grinding wheel from a first position to a second position in a z-direction without moving the grinding-wheel driving motor. The rotating grinding wheel engages the blade. The grinding wheel sharpens the blade.
Abstract:
A sharpening machine generally includes a grinding wheel having a perimeter that is rotatable about a first axis. The sharpening machine includes an adjustment device adapted to be coupled to a structure of the sharpening machine. A shaft, mounted to the adjustment device, defines a second axis that is generally parallel to the first axis when the adjustment device is coupled to the structure and is movable along a predetermined feed axis toward the grinding wheel. A carousel is rotatably connected to the shaft of the adjustment device. A contouring tool having a counter surface is rotatably connected to the carousel. Movement of the shaft of the adjustment device along the feed axis is configured to translate the carousel and move the contouring tool into and out of engagement with the grinding wheel to facilitate dressing of the perimeter of the grinding wheel to a grinding wheel contour.