摘要:
Embodiments of a golf club head with a textured strikeface and methods to form said club head through laser shock treatment are generally described herein. The golf club head can comprise a body and a strikeface. The strikeface has a textured front surface, with an array of indentions. Each indention can have a footprint area of between 0.01 μm2 (1×10−8 mm2) to 250,000 μm2 (0.25 mm2). The textured front surface can affect the spin imparted to a golf ball upon impact. Other embodiments may be described and claimed.
摘要:
A method of strengthening through real-time coupling of electrical pulses and laser shock waves is provided. The initial time and duration of the electrical pulses are controlled to be matched with the initial time and duration of the laser shock waves, so that the electrical pulses and the laser shock waves are coupled in real time for material strengthening, the plasticity and the strength of the material are greatly improved, and a large area of the workpiece is uniformly strengthened. By simultaneously introducing the electrical pulses into the pulse current-assisted LSP, a great strengthening effect is achieved through the combination of the electrical pulses and the pulse current-assisted LSP in a short time, thereby reducing the internal defects of the material to a certain extent and further increasing the fatigue life of the material.
摘要:
A processed product manufacturing method includes preparing a workpiece containing metal and forming a plurality of first regions and a second region along a surface of the workpiece by the irradiation of a laser beam. The first regions are applied with a tensile residual stress. In the second region applied with a compressive residual stress, a plurality of irradiation points separated from each other in the surface of the workpiece are irradiated with the laser beam. The first regions are formed to be separated from each other and each of the first regions is surrounded by the second region when viewed from a direction orthogonal to the surface.
摘要:
Joining methods and corresponding structures are disclosed. In some instances, a method for joining two or more components may include generating a shockwave in a first component to form a jet of a material of the first component directed towards a second component. The jet may penetrate the second component to connect the first component with the second component. Articles of pre-joined and joined components are also described.
摘要:
The present disclosure generally relates to methods and apparatuses for laser shock peening during additive manufacturing (AM) processes. Such methods and apparatuses can be used to embed microstructural and/or physical signatures into manufactured objects, and such embedded chemical signatures may find use in anti-counterfeiting operations and in manufacture of objects with multiple materials.
摘要:
A focusing unit of a laser processing apparatus includes: a focusing lens that focuses a laser beam oscillated from a laser beam oscillating unit; and a spherical aberration extending lens that extends the spherical aberration of the focusing lens. A pulsed laser beam is applied from the focusing unit to a workpiece held on a chuck table, to form shield tunnels each composed of a fine hole and an amorphous region shielding the fine hole, the shield tunnels extending from an upper surface toward a lower surface of the workpiece.
摘要:
A method of post processing a laser peened component to remove a laser remelt layer is proposed. The post processing includes a series of steps including grit blasting, chemical etching and mechanical finishing the component. This will ensure that the mechanical property (i.e., damage tolerance) benefit of laser peening is restored to the surface of the component.
摘要:
The present invention relates to a device as well as a method for the additive manufacture of components by deposition of material layers by layer-by-layer joining of powder particles to one another and/or to an already produced pre-product or substrate, via selective interaction of the powder particles with a high-energy beam, wherein, for smoothing a surface of the component being produced running crosswise to the deposited material layers in between the deposition of two layers of the component, the complete edge region of the last layer that is applied and that runs along a surface of the component being produced is compacted in a direction of action that has a directional component parallel to the build-up direction of the layers, and/or at least one edge region (19) of a surface of the component (3′) is also compacted.
摘要:
A method and apparatus attach a laser diode on a submount to a slider. The submount and laser diode form a submount assembly. The slider includes an air-bearing surface (ABS) and a transducer. The apparatus includes an optical fiber and a holder. The optical fiber is configured to carry a laser pulse. The holder includes a vacuum channel and an optical fiber aperture therein. A portion of the optical fiber is held in the optical fiber aperture. The vacuum channel is configured to hold the submount assembly by a pressure differential between a pressure developed in the vacuum channel and an external pressure at a remaining portion of the submount assembly. The pressure in the vacuum channel is less than the external pressure. The method holds the submount assembly in the apparatus, aligns the submount assembly to the slider and provides a laser pulse through the fiber.
摘要:
A laser marking method and system, and laser marked object are disclosed. The method includes directing a pulsed laser beam towards an object such that an interface between an oxidized layer and non-oxidized substrate is in a mark zone of the pulsed laser beam, and scanning the pulsed laser beam across the object in a predetermined pattern to create a mark having an L value of less than 40 and a surface roughness that is substantially unchanged compared to adjacent unmarked areas. The system includes a fiber laser generating amplified pulses that are directed towards a galvo-scanner and focusing optic, while the object includes an oxidized surface layer, an underlying non-oxidized substrate, and a mark having an L value of less than 40 with substantially unchanged roughness features.