Abstract:
[Object]To provide a rolling apparatus capable of accurately detecting a rolling direction force applied to a work roll chock.[Solution]A rolling apparatus for flat-rolled metal materials including a pair of upper and lower work rolls 1 and 2 includes a pair of work roll chocks 5 and 6 configured to hold the respective work rolls 1 and 2, housings 10 configured to hold the work roll chocks, and rolling direction force measurement devices 21, 22, 23, and 24 configured to measure rolling direction forces. The rolling direction force measurement devices include a plurality of load detection devices on an entry side or an exit side of the work roll chocks in a rolling direction, and the plurality of load detection devices are provided to one of the housings, and the plurality of load detection devices are disposed in a manner that, during rolling of the flat-rolled metal materials, at least two of the load detection devices are arranged adjacent to each other in a draft direction facing a side surface of a corresponding one of the work roll chocks. In this case, the at least two load detection devices are disposed in a manner that a line extending in the rolling direction and including a roll axis, which is a point of effort of a rolling direction force, is interposed between the at least two load detection devices in the draft direction.
Abstract:
The invention relates to a method and a rolling stand (100) for cold rolling rolled stock. The rolling stand (100) comprises at least one upper and one lower backup roll (110-1, 110-2) and also an upper and a lower work roll (120-1, 120-2), which define a roll gap (128). Optionally, a lower and an upper intermediate roll (130-1, 130-2) may also be provided between the work rolls and the backup rolls. In order to ensure an absolutely equal circumferential speed of the upper and lower work rolls when cold rolling in skin-pass mode, it is proposed according to the invention to decouple the upper or lower work roll from its associated drive device.
Abstract:
The invention concerns a 4-high/6-high/18 HS cassette-type roll stand in which bending force is transmitted to bending journals (6) of roll inserts (7) by piston-cylinder units that are connected with Mae West blocks (3).Here, the piston at the piston rod (1) is fixedly connected with the Mae West block (3) and the cylinders (4) fit around the bending journals (6) at the inserts (7) of the rolls, so that thereby bending force can be transmitted directly to the bending journals (6) of the roll inserts (7).
Abstract:
A method and device for controlling the final thickness of a rolled product at a tandem rolling mill exit which make it possible to remove the cyclic defects of the product thickness variation. The method includes using at least one rolling stand provided with hydraulic adjustment devices located on the tandem rolling mill exit and in compensating the cyclic defects of the product thickness variation generated upstream through the entire rolling mill on the stand with the aid of an adjuster (R) coordinated with the frequency of defects. The method and device are suitable for tandem cold rolling mills producing metal strips. The thickness defects are detectable by a thickness sensor.
Abstract:
The object is to eliminate the difference in offset of work rolls at the upper and lower and left and right of the rolling mill occurring in the kiss roll state of the zero point adjustment work before rolling or during rolling and eliminate the problem of warping of the flat products or meander or camber due to the thrust force acting between the work rolls and backup rolls.For this, there are provided a rolling mill for flat products having a pair of upper and lower work rolls driven by electric motors, a pair of upper and lower backup rolls contacting the work rolls and supporting the rolling reaction force applied to the work rolls, and devices for applying substantially horizontal direction external forces to the upper and lower work rolls, the rolling mill for flat products characterized in that a direction of horizontal direction external forces applied to the work rolls is the same direction as the horizontal direction force component of the rolling reaction force applied to the work rolls due to the rolling direction offset and in that the horizontal direction external forces applied to the work rolls are supported by rolling mill housing project blocks or work roll chock support members, and a rolling method for flat products using the same.
Abstract:
A method for eliminating the vibrational chatter in a rolling mill stand, whereby existing roll chocks are machined to allow commercially available thrusting means, including hydraulic cylinders and the accompanying fittings and tubing, to be installed directly into the chocks so that when activated the thrusting means thrust horizontally outward to take up any gapping or play occurring between the chock face and the mill housing during normal mill operations, thus effectively eliminating chatter.
Abstract:
The invention relates to a rolling mill (1) which is used to hot roll metal, in particular aluminium. Said rolling mill comprises a hot strip mill (3) provided with a pre-rolling train (4) and a finishing rolling train (5). The aim of the invention is to improve said rolling mill such that it is more compact and/or such that the systems, which are already compact, are more productive. The pre-rolling train (4) is embodied as a tandem train, wherein the rolling product is milled in a tandem mode for jointly involving at least two pre-rolling frames (8, 9) arranged one behind the other. Alternatively or simultaneously, the pre-rolling train (4) and the finishing train (5) work together as a tandem train. Milling occurs place in the tandem mode when the frame of the pre-rolling train and the finishing train are used together. In the finishing train, milling can take place, preferably, in a reversing tandem mode.
Abstract:
Disclosed is a device for bending the rolls in a roll stand comprising several rolls. Said device is provided with bending blocks which are fastened between the built-in roll parts and the stand windows at the delivery end and the discharge end, the top and bottom bending blocks being connected by means of piston cylinders and/or a vertical positioning mechanism, preferably a spindle-type lifting gear unit. A bending force can be introduced into the bending blocks (5, 5a) which are connected on the same side via a piston cylinder (7) while the opposite bending blocks (5′, 5a′) can be positioned and locked via the spindle-type lifting gear unit (10).
Abstract:
An apparatus for and method of manufacturing lithium or lithium alloy anodes for electrochemical cells by a lamination process wherein a lithium or lithium alloy sheet is reduced into a thin lithium or lithium alloy film. The method and apparatus provide adjustments of the profile defined by the meeting surfaces of a pair of working rollers to compensate for thermal dilation of the working rollers or to compensate for irregular thickness of the lithium or lithium alloy sheet to control the shape and profile of the lithium or lithium alloy film being laminated.
Abstract:
A screw down cylinder, an upper backup roll chock, and an upper work roll chock are pressed against an upper crosshead by hydraulic cylinders, and an upper roll cross mechanism is actuated, whereby the upper backup roll chock (upper backup roll), the upper work roll chock (upper work roll), and the screw down device (screw down cylinders) can be synchronously moved in the same direction via the upper crosshead.