Abstract:
The present invention relates to a process for the preparation of biodegradable polyurea/polyurethane microcapsules, preferably perfume-containing polyurea/polyurethane microcapsules, which have a balance of biodegradability, stability and performance compared to prior art microcapsules. In addition, the present invention relates to biodegradable polyurea/polyurethane microcapsules comprising at least one lipophilic active ingredient obtainable by the process of the invention. In another aspect, the invention described herein relates to the use of such microcapsules or microcapsule dispersions comprising the microcapsules according to the invention for the manufacture of household products, textile care products, detergents, fabric softeners, cleaning agents, scent boosters, scent lotion or scent enhancers, cosmetics, personal care products, agricultural products or pharmaceutical products. Ultimately, the present invention relates to consumer products comprising such microcapsules or microcapsule dispersions.
Abstract:
This invention relates to methods and systems for isolation of species in semi-permeable capsules and processing of encapsulated species through series of steps and/or reactions. To produce capsules, first aqueous two-phase system (ATPS) droplets are generated using microfluidics system. Then the hydrogel shell layer is hardened by inducing polymerization. As exemplified in this invention to achieve concentric ATPS droplet formation density-matched PEGDA and Dextran polymer solutions can be used. Once a capsule is formed, its composition can be changed by adding new reagents or replacing out old ones (e.g. by resuspending capsules in desired aqueous solution). The hydrogel shell of semi-permeable capsules can be dissolved at selected step during multi-step procedures to release the encapsulated species. This invention exemplifies isolation of individual cells within capsules and using the encapsulated cells for genotypic and phenotypic analysis. This invention also exemplifies use of capsules in multi-step procedures to perform complex biological reactions.
Abstract:
A method for generating capsules includes: a. providing in a first chamber a dispersed phase, the dispersed phase including a solution including a first solvent and a matrix-forming agent, the matrix-forming agent is a solid in its pure state and the first solvent and the matrix-forming agent are configured such that the matrix-forming agent is soluble in the first solvent; and b. providing in a second chamber a continuous phase, the continuous phase including a second solvent. The first and second chambers are fluidic connected by channel(s). The method further includes: c. guiding the dispersed phase from the first chamber through the channel(s) into the second chamber to form an emulsion or a dispersion including a plurality of droplets of the dispersed phase, in the continuous phase; and d. removing the first solvent from the droplets of the dispersed phase and solidifying the matrix-forming agent to form a capsule.
Abstract:
The invention relates to an encapsulating device (100), which is designed to encapsulate a sample (1, 2) in a polymer capsule, comprising a drop generator (10), which is designed to provide a drop (3) of a suspension, which drop contains the sample (1), and a cross-linking device (20), which is designed to polymerize the drop (3), wherein the drop generator (10) has a retaining device (11), which is designed to accommodate the drop (3) in a hanging state, and the cross-linking device (20) is designed to feed a polymerization substance to the hanging drop (3) on the retaining device (11) and to form the polymer capsule. The invention further relates to a method for encapsulating a sample (1, 2) in a polymer capsule.
Abstract:
The invention is directed to a seamless alginate capsule having a film encapsulating a fill material, in which the film comprises alginate, noncrystallizing plasticizer, and glycerol and in which a ratio by weight of noncrystallizing plasticizer to glycerol in the film is between about 1:1 and about 8:1. The invention is also directed to a method of making the seamless alginate capsules and to capsules made by the method. The capsules have excellent breaking strength and are resistant to oxidation of the fill material.
Abstract:
Comestible products, for example beverage products, are disclosed containing encapsulated probiotic bacteria having resistance to subjection to at least thermal and acidic conditions. Beverage products include at least one aqueous liquid and capsules comprising a gelled mixture of alginate and denatured protein, and probiotic bacteria entrapped within the gelled mixture. The average particle size of the capsules is optionally less than 1000 microns (μm) in diameter, such as less than 500 μm in diameter. Methods are provided for making such encapsulated probiotics by providing a mixture comprising sodium alginate, denatured protein and active probiotic cells, and combining the mixture with a divalent cation to initiate cold gelation of the sodium alginate and denatured protein to form a second mixture. The second mixture is passed through an opening having a diameter of less than 1000 μm to form capsules. The weight ratio of protein to alginate is from 1:1 to 9:1.
Abstract:
Polyurea capsules that encapsulate active materials in polymeric walls resulting from the polymerization of an aliphatic polyisocyanate and a cross-linking agent such as a diamine, amphoteric amine or guanidine amine/salt are provided as are consumer products containing said polyurea capsules and for methods for producing such capsules.
Abstract:
Provided are: a capsule for non-ferrous metal collection that can collect a non-ferrous metal; and a method for collecting a non-ferrous metal using same. The capsule for non-ferrous metal collection comprises capsule contents and a covering section covering the capsule contents, and collects a non-ferrous metal within the capsule for non-ferrous metal collection by means of the capsule for non-ferrous metal collection being immersed in a solution containing a non-ferrous metal.
Abstract:
Embodiments may include a method for reducing a solvent concentration in a plurality of microparticles. The method may involve contacting a mixture including the plurality of microparticles and the solvent with water to form an aqueous suspension. A first portion of the solvent may dissolve into the water of the aqueous suspension to reduce the solvent concentration in the plurality of microparticles from a first solvent concentration in the mixture to a second solvent concentration in the aqueous suspension. The method may also include transferring the aqueous suspension to a concentration unit that may further reduce the solvent concentration from the second solvent concentration to a third solvent concentration. The method may further include transferring a microparticle concentrate with the third solvent concentration to a washing unit to form an amalgam of washed microparticles with a fourth solvent concentration. The method may also include drying the amalgam of washed microparticles.
Abstract:
A method for encapsulating a material, the steps include choosing a material to encapsulate; placing the material into a material solvent to form a material solution; forming a primary emulsion of the material solution in an immiscible liquid medium that is immiscible with the material solvent, wherein the material solution is the disperse phase and the immiscible liquid medium is the continuous phase of the primary emulsion, wherein the immiscible liquid medium contains an encapsulating agent dissolved therein, the encapsulating agent capable of being crosslinked, polymerized, gelled, hardened or solidified; adding the primary emulsion as droplets into a crosslinking medium, wherein the crosslinking medium is immiscible with the continuous phase immiscible liquid medium of the primary emulsion, and thereafter activating the crosslinking, polymerizing, gelling, hardening or solidifying of the encapsulating agent to envelope the material in a crosslinked, polymerized, gelled, hardened or solidified matrix forming the droplets into beads.