Abstract:
A thermal device comprising a garment (42A) that may be placed against at least a part of the body (10), the garment (42A) defining at least one enclosed compartment (48, 50) defined between an inner wall (65) and an outer wall (66), and an inlet (21) whereby liquid may be introduced into each such enclosed compartment (48, 50). Each enclosed compartment (48, 50) contains dry material (30) comprising water-soluble chemical compounds that dissolve endothermically or exothermically, and also a compressed sponge (62). There may also be an air bleed valve (64) to bleed any air out of the compartment (48, 50) when water is introduced. The device enables a patient's body to be cooled or heated in emergency, needing only addition of water, and incorporating no toxic or hazardous materials.
Abstract:
A respirator includes a frame, a filter layer, and a face seal member. The frame has an outer side and an inner side. The frame defines an opening therethrough. The filter layer is mounted to the outer side of the frame and covers the opening of the frame. The filter layer is configured to prohibit permeation of aerosol, gas, and/or vapor contaminants therethrough. The face seal member is mounted to the inner side of the frame. The face seal member includes a seal contact area configured to engage a facial surface of a wearer. The face seal member incorporates a phase change material therein. The phase change material is configured to provide localized cooling by absorbing heat emitted by the wearer.
Abstract:
A protective suit (100), especially for an operator (1) in a cooling chamber that is cooled using liquid nitrogen or vapor of the liquid nitrogen comprises a body suit (10) which has a thermally insulating, gas-tight cover material (20) and is designed to accommodate the operator (1), and a heating device (30) which is connected to the body suit (10) and is designed to heat the interior of the protective suit (100). A glove (70) which is made of a thermally insulating glove material (71) and includes a glove heater (77) is also described.
Abstract:
A personal thermal regulation system includes a personal liquid cooling garment, wherein the personal liquid cooling garment is configured to circulate a working fluid therein, a membrane evaporator configured to receive circulated working fluid from the personal liquid cooling garment, wherein the membrane evaporator is further configured to evaporate a portion of the received circulated working fluid, and a chemical absorber in fluid communication with the membrane evaporator, wherein the chemical absorber is configured to receive a controlled flow of the evaporated portion of the received circulated working fluid from the membrane evaporator.
Abstract:
A personal protective suit including a sealed shell equipped with connection device intended to be connected to one same pressurized air source, air distribution device having an air intake connected to the connection device, and at least one first and one second air outlet, respectively intended to supply device for delivering air to the wearer and device for ventilating the suit, wherein the air distribution device includes a valve designed to reduce the air flow rate of the second air outlet when the air pressure at the air intake is below a determined value, while maintaining the supply of air to the wearer.
Abstract:
This invention is for a composite structure and a garment constructed from the composite structure which can be worn next to the skin or as outerwear as well as a process for making the composite structure and garment. The garment provides microclimate control for the wearer by means of at least one three-dimensional passageway formed by an outer cover material which is secured to a first substrate layer. The passageway contains a filler material which adds support to the walls of the passageways and allows a fluid to flow through the filler material. The passageway provides a thermal insulation by its bulk or by allowing a fluid to be pumped through it. The first substrate layer is breathable to increase the comfort level of the wearer.
Abstract:
A conditioning garment has an array of tubes (11) for passing heated/cooled fluid to heat/cool a wearer of the garment. The array of tubes (11) terminate at a connector (16) for connection to a source of heated/cooled liquid. The connector (16) comprises a male part (15) and a female part (17) with a releasable latch (22, 34, 40) acting between the male and female parts (15, 17) to hold the male part (15) in engagement with the female part (17). The releasable latch includes a release member (40) moveable in a rectilinear path away from the connector (16) to release the latch and allow separation of the male part (15) from the female part (17). The male and female parts (15, 17) are self-sealing on disengagement. This allows for automatic separation of the male and female parts (15, 17) in an emergency.
Abstract:
A garment is provided which is worn by a wearer and which actively cools the wearer. A heat transfer fluid pathway is provided which feeds the heat transfer fluid through a vest and cap or other heat transfer garment, where the heat transfer fluid draws heat away from the body of the wearer. The pathway is established between an inner layer proximate to the body of the wearer and an outer layer. Dots are provided which connect the inner layer and the outer layer together within the pathway. Fences are provided and borders to channel the heat transfer fluid along the pathway within the garment. A supply of elevated pressure air is optionally provided to maintain optimal contact for efficient heat transfer between the heat exchange fluid within the garment and the body of the wearer.
Abstract:
An adaptor enables a convective treatment system to be modified for cooling by providing a bath of pressurized, cooled air intended to lower the body core temperature of a person. The adaptor may be constructed for being coupled between a blower assembly that provides a stream of pressurized air and a convective treatment device that receives the stream of pressurized air, distributes it, and provides it for bathing the body of a person in a general bath of cooled air in order to produce a desired clinical effect such as prevention or alleviation of hyperthermia or for thermal comfort. Such an adaptor may be embodied as an enclosure having a shaped internal cavity. The shape is useful for effectively and efficiently distributing a flow of pressurized over, around and through a bed of ice disposed in the cavity. Ports are provided in the enclosure for introducing a flow of pressurized air into, and receiving a flow of pressurized air from, the cavity.
Abstract:
A heat transfer fluid pathway is provided driven by a pump which feeds the heat transfer fluid through a vest and cap or other heat transfer garment, where the heat transfer fluid draws heat away from the body of the wearer. A drinkable heat sink material is located within a removable cartridge located within a heat exchange pouch. The heat transfer fluid passes from the heat transfer garment to the heat exchange pouch where heat drawn from the wearer is transferred to the heat sink material within the cartridge. A temperature control valve is provided along with a bypass line so that an adjustable amount of the heat transfer fluid is routed to the heat exchange pouch for temperature control. A supply of elevated pressure air is optionally provided to maintain optimal contact for efficient heat transfer within the heat exchange garment and the heat exchange pouch.